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Preface

One of the basic principles of software engineering is abstraction, which mainly
refers to separation of the essential from the non-essential. In terms of software de-
velopment, the essential usually refers to the functionality to be implemented and
the non-essential to aspects such as the technical platform on which the software
will eventually be deployed. However, non-essential aspects are not unimportant.
They also have to be considered when designing and developing a software system,
but they do not have to be considered at the very first stage when more fundamental
issues have to be considered.

Abstractions are provided by models. A model is mainly a representation of the
essential aspects of the underlying subject and thus contains less complexity. Less
complexity obviously allows the prediction of system characteristics, analyzing spe-
cific properties, and also communicating with the various roles involved in the devel-
opment process more easily. However, implementing a model means expressing it at
a very low level of abstraction, i.e. at a level at which it is understood by a computer.

Modeling and model transformation to the required abstraction level constitute
the core of model-driven development. In model-driven development, essential as-
pects of software are expressed in the form of models, and transformations of these
models are considered the core of software development. Models can particularly
be transformed into a technical implementation, i.e. a software system. Such an ap-
proach can avoid restricting oneself to a specific technology in the early stages of the
development process and can ensure a consistent architecture throughout the life-
cycle of a software system.

The aim of this book is to give an overview of the current achievements in model-
driven development. In the introductory chapter Models, Modeling, and Model-
Driven Architecture (MDA), Brown, Conallen and Tropeano first explain the ter-
minology used in the following chapters of the book and introduce basic principles
and methods in model-driven development. Achievements in model-driven develop-
ment are then considered from a conceptual point of view in Part I of the book that
comprises the following chapters:
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• A Systematic Look at Model Transformations. Metzger focuses on model trans-
formations and presents a classification scheme to consider the differences be-
tween the modeled system, the model itself and the formalism used.

• Tool-support for Model-Driven Development of Security-Critical Systems with
UML. Jürjens and Shabalin show the use of UML in model-driven development.
In particular, they give a formal semantics for a subset of UML which can be
used to analyze the interaction of a system with its environment and UML spec-
ifications.

• Caste-Centric Modeling of Multi-Agent Systems: The CAMLE Modeling Lan-
guage and Automated Tools. Zhu and Shan introduce the CAMLE approach to
model-driven development of multi-agent systems by combining graphical mod-
eling with formal specification.

• Using Graph Transformation for Practical Model Driven Software Engineering.
In this chapter, Grunske et al. consider model transformations using graph trans-
formation theory, in particular to specify and apply model transformations.

• A Generalized Notion of Platforms for Model Driven Development. Atkinson
and Kühne consider two of the basic terms in model-driven development, plat-
form and platform model. They show the origin of these terms and propose an
alternative definition for them.

Part II then considers technical achievements and technical infrastructures of model-
driven development in the following chapters:

• A Tool Infrastructure for Model-Driven Development Using Aspectual Patterns.
Hammouda introduces a concern-based approach to model-driven development
and presents a tool, called MADE, which particularly supports model generation,
checking and tracing.

• Automatically Discovering Transitive Relationships in Class Diagrams. Egyed
considers the problem of abstracting class diagrams of certain complexity with
tool support. The approach proposed uses a large number of abstraction rules and
is used for model understanding, consistency checking and reverse engineering.

• Generic and Domain-Specific Model Refactoring using a Model Transformation
Engine. Zhang, Lin and Gray propose an approach for refactoring at the model
level with the use of behavior-preserving transformations. Their chapter also cov-
ers a model transformation engine for refactoring various types of models.

• A Testing Framework for Model Transformations. Lin, Zhang and Gray discuss
validation and verification of model transformation at the model level rather than
late in the development process at the source code level. The framework pre-
sented is integrated in the transformation engine presented in the previous chapter
and provides means for typical testing activities.

• Parallax – An Aspect-Enabled Framework for Plug-in-Based MDA Refinements
Towards Middleware. Silaghi and Strohmeier present the Parallax framework,
an open and extensible tool which particularly supports configuring application
designs with regard to specific middleware concerns and adapting to different
middleware infrastructures.
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• Evolution and Maintenance of MDA Applications. Seifert and Beneken investi-
gate the life cycle of applications developed according to the model-driven devel-
opment approach. They particularly focus on long-term aspects and consider the
maintenance of such applications and the progress in model-driven development.

The chapters in Part III finally summarize experience gained in actual projects em-
ploying model-driven development:

• Intents and Upgrades in Component-Based High-Assurance Systems. Elmqvist
and Nadjm-Tehrani describe their experience using model-driven development
in the area of high-assurance components, particularly components used as part
of embedded systems.

• On Modeling Techniques for Supporting Model Driven Development of Proto-
col Processing Applications. Alanen et al. use model-driven development in the
area of protocol processing applications. They give an overview of a respective
method and summarize their experience.

• An Integrated Model-driven Development Environment for Composing and Val-
idating Distributed Real-time and Embedded Systems. Trombetti et al. employ
model-driven development in the area of distributed real-time and embedded ap-
plications. They present an integration of tool suites for model-driven develop-
ment and model checking in this area.

• A Model-Driven Technique for Development of Embedded Systems Based on the
DEVS formalism. Wainer, Glinsky and MacSween propose a model-driven ap-
proach to the development of embedded systems with real-time constraints based
on the formal technique of DEVS, and summarize their experience using this ap-
proach.

• Model Driven Service Engineering. Bræk and Melby consider problems associ-
ated with expressing platform-independent models and their behaviors, and also
discuss how to handle implementation and platform-dependent properties. They
suggest possible solutions to those problems based on their experience.

• Practical Insights into Model-Driven Architecture: Lessons from the Design and
Use of an MDA Toolkit. Brown, Conallen and Tropeano finally summarize their
experience in the design and use of a model-driven architecture toolkit at IBM.

Work on this book officially began in April 2004 with an email to the seworld
mailing list, which was followed by individual invitations sent to the leading ex-
perts of the field. Researchers and practitioners have been invited to summarize their
research results and experience in model-driven development in the form of book
chapters. Fortunately, we received a large number of very high-quality contributions,
which shows that model-driven development will not be a short-lived hype in soft-
ware engineering. We are very grateful for the contributions and would like to thank
all authors for their effort.

Leipzig and Bonn, Sami Beydeda
May 2005 Matthias Book

Volker Gruhn
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Introduction: Models, Modeling, and Model-Driven
Architecture (MDA)

Alan W. Brown, Jim Conallen, and Dave Tropeano

IBM Software Group,
4205 S. Miami Blvd, Durham, NC 27703, USA
{awbrown, jconallen, davetropeano}@us.ibm.com

Summary. Models, modeling, and Model-Driven Architecture (MDA) are the basis for a set
of development approaches known as model-driven development (MDD). Models are used to
reason about a problem domain and design a solution in the solution domain. Relationships
between these models provide a web of dependencies that record the process by which a
solution is created, and help to understand the implications of changes at any point in that
process.

In addition to creating these models, we can define rules for automating many of the steps
needed to convert one model representation to another, for tracing between model elements,
and for analyzing important characteristics of the models. This style of MDD is called Model-
Driven Architecture (MDA). The MDA approach is being widely discussed in the software
industry today as a way of increasing the quality, efficiency, and predictability of large-scale
software development. In this paper we explore the role of modeling and the MDA style of
MDD, and provide a useful context for understanding current product and research efforts in
area of MDA.

1 Introduction

It is tempting to believe that software development is easy. You gain an understand-
ing of the problem that needs to be addressed by talking with people familiar with
that domain, and then design a solution to meet those needs and deploy it in the cus-
tomer’s environment. Unfortunately, several issues can get in the way to make the
task of software development a lot more challenging:

• We rarely, if ever, get a full understanding of the problem space. Domain experts
help, but they, too, have a limited understanding of the areas they work in, view
things from different perspectives, or disagree on approaches, processes, and pri-
orities. So in practice, we spend a lot of time analyzing these different inputs and
obtaining a common, evolving view of the customer’s domain.

• There are many constraints on the solutions to consider: for example, balancing
the time and effort required to implement a system, integrating with existing
applications and technologies already in place, and coordinating multiple teams
producing different components of the deployed system.
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• Many kinds of changes must be addressed at all stages of development: errors
will be discovered, designs will be updated, requirements will be refined, priori-
ties will be changed, implementations will be refactored, and so on. The dynamic
nature of the development process results in a lot of time spent on understanding
the impact of a change, defining a plan to address the change, and ensuring that
any actions are carried out appropriately.

• A large software development task is an engineering project involving teams of
people with different skills interacting over an extended period of time to im-
plement a solution that can never truly be said to be “finished.” As a result, all
the techniques of managing engineering projects must be taken into account:
scheduling, resource management, risk mitigation, ROI analysis, documentation,
support, and so on.

Software engineers turn to many techniques to address these challenges. One
of the most fundamental is the use of models and modeling. Models provide ab-
stractions of a physical system that allow engineers to reason about that system by
ignoring extraneous details while focusing on the relevant ones. All forms of engi-
neering rely on models as essential to understanding complex real-world systems.
Models are used in many ways: predicting system qualities, reasoning about specific
properties when aspects of the system are changed, and communicating key system
characteristics to its various stakeholders. The models may be developed as a pre-
cursor to implementing the physical system, or they may be derived from an existing
system or a system in development as an aid to understanding its behavior [386].

There are many aspects of a system that may be of interest. Depending on what
is considered relevant at any point in time, various modeling concepts and nota-
tions may be used that highlight one or more particular perspectives, or views, of
that system. Furthermore, in some instances models can be augmented with hints, or
rules, that assist in transforming them. For example, it is often necessary to convert
between different views of the system at an equivalent level of abstraction (e.g., be-
tween a structural view and a behavioral view), and model transformations facilitate
this. In other cases, a transformation converts models offering a particular perspec-
tive between levels of abstraction, usually from a more abstract to less abstract view
by adding more detail supplied by the transformation rules.

These ideas of models, modeling, and model transformation are the basis for a
set of software development approaches that are known as model-driven develop-
ment (MDD). Models are used to reason about the problem domain and the solution
domain. Relationships between these models provide a web of dependencies that
record the process by which a solution was created, and help us to understand the
implications of changes at any point in that process.

In fact, we can be quite prescriptive in the use of models in a software devel-
opment process. If we define the kinds of models that must be produced, and apply
some rigor to the precise semantics of these models, we can define rules for:

• Automating many steps needed to convert one model representation to another.
• Tracing between model elements.
• Analyzing important characteristics of the models.
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This style of MDD, called Model-Driven Architecture (MDA), is championed by
the Object Management Group (OMG). It is based on a set of emerging standards
for how to define a set of models, notations, and transformation rules. The MDA
approach provides an open, vendor-neutral basis for system interoperability via
OMG’s established modeling standards: Unified Modeling Language (UML), Meta-
Object Facility (MOF), and Common Warehouse Metamodel (CWM). Platform-
independent descriptions of enterprise solutions can be built using these modeling
standards and can be transformed into a major open or proprietary platform, includ-
ing CORBA, J2EE, .NET, XMI/XML, and Web-based platforms [324].

MDA styles of development are being widely discussed in the software industry
today as a way of increasing the quality, efficiency, and predictability of large-scale
software development [135, 115, 114]. However, few documented experiences with
the use of MDA styles of development are available. In this paper we explore the
role of modeling and the MDA style of the MDD development, and provide a use-
ful context for understanding current product and research efforts in area of MDA.
Our work is based on a number of experiences, including creation and use of an
MDA toolkit developed to extend an existing modeling workbench to support MDA
styles of development for particular customer situations in which families of related
software applications were being created within a single domain. We believed MDA
offered the best means to capture commonalty in the problem domain, express trans-
formation rules that convert the problem understanding into a candidate solution, and
repeatably to generate major parts of that solution to the customers’ environment of
choice [51].

2 Modeling Approaches

In the software engineering world, modeling has had a rich tradition from the ear-
liest days of programming. The most recent innovations have focused on notations
and tools that allow users to express system perspectives of value to software archi-
tects and developers, and to express these perspectives in ways that can be readily
mapped into the programming language code compiled for a particular operating sys-
tem platform. The current state of this practice employs the Unified Modeling Lan-
guage (UML) as the primary modeling notation [138]. The UML allows development
teams to capture a variety of important characteristics of a system in corresponding
models. Transformations among these models is primarily manual, although tools
can be used to manage traceability and dependency relationships among model el-
ements according to best practice guidance on maintaining synchronized models as
part of a large-scale development effort [9].

One useful way to characterize current practice is to look at the different ways
in which the models are synchronized with the source code they help describe. This
is illustrated in Fig. 1,1 which shows the spectrum of modeling approaches in use
by software practitioners today. Each category identifies a particular use of models

1 This is based on a diagram originally created by John Daniels.
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in assisting software practitioners to create running applications (code) for a specific
runtime platform, and the relationship between the models and the code.2

“The code is the 
model” 

“The model is the code” “Let’s do 
some design” 

“What’s a 
Model?”

“Code and model 
coexist”

Code 

Model 

Code Code 

Code Visualization. 

Model-centric Model only 

Code

Code only 

Roundtrip 

Engineering

ModelModelModel

Fig. 1. The modeling spectrum

Today, a majority of software developers still take a code-only approach (see the
left end of the modeling spectrum, Fig. 1), and do not use separately defined models
at all. They rely almost entirely on the code they write, and they express their model
of the system they are building directly in a third-generation programming language
(3GL) such as Java, C++, or C# within an integrated development environment (IDE)
such as IBM WebSphere Studio, Eclipse, and Microsoft VisualStudio.3 Any “model-
ing” they do is in the form of programming abstractions embedded in the code (e.g.,
packages, modules, interfaces, etc.), which are managed through mechanisms such
as program libraries and object hierarchies. Any separate modeling of architectural
designs is informal and intuitive, and lives on whiteboards, in PowerPoint sides, or
in the developers’ heads. While this may be adequate for individuals and very small
teams, this approach makes it difficult to understand key characteristics of the sys-
tem among the details of the implementation of the business logic. Furthermore,
it becomes much more difficult to manage the evolution of these solutions as their
scale and complexity increases, as the system evolves over time, or when the original

2 Many other important life-cycle artifacts also benefit from a model-driven approach (e.g.,
requirements lists, test cases, and build scripts). For simplicity we concentrate on the pri-
mary development artifact – the code.

3 For this discussion we shall ignore the fact that the code is itself a realization of a program-
ming model that abstracts the developer from the underlying machine code for manipulat-
ing individual bits in memory, registers, etc.
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members of the design team are not directly accessible to the team maintaining the
system.

Developers can frequently gain additional insights when provided with code vi-
sualizations in some appropriate modeling notation. As developers create or analyze
an application they often want to visualize the code through some graphical notation
that aids their understanding of the code’s structure or behavior. It may also be pos-
sible to manipulate the graphical notation as an alternative to editing the text-based
code, so that the visual rendering becomes a direct representation of the code. Such
rendering is sometimes called a code model, or an implementation model, although
many feel it more appropriate to call these artifacts “diagrams” and reserve the use of
“model” for higher levels of abstraction. In tools that allow such diagrams (e.g., IBM
WebSphere Studio and Borland Together/J), the code view and the model view can
be displayed simultaneously; as the developer manipulates either view the other is
immediately synchronized with it. In this approach, the diagrams are tightly coupled
representations of the code and provide an alternative way to view and possibly edit
at the code level.

Further advantage of the models can be taken through roundtrip engineering
(RTE) between an abstract model of the system describing the system architecture or
design, and the code. The developer typically elaborates the system design to some
level of detail, then creates a first-pass implementation from that code by applying
model-to-code transformations, usually manually. For instance, one team working on
the high-level design provides design models to the team working on the implemen-
tation (perhaps simply by printing out model diagrams, or providing the implementa-
tion team some files containing the models). The implementation team converts this
abstract, high-level design into a detailed set of design models and the programming
language implementation. Iterations of these representations will occur as errors and
their corrections are made in either the design or the code. Consequently, without
considerable discipline, the abstract models and the implementation models usually
– and quickly – end up out of step.

Tools can automate the initial transformation, and can help to keep the design
and implementation models in step as they evolve. Typically the tools generate code
stubs from the design models that the user has to further refine.4 As changes are made
to the code they must at some point be reconciled with the original model (hence the
term “roundtrip engineering,” or RTE). Tools adopting this approach, such as IBM
Rational Rose, can offer multiple transformation services supporting RTE between
models and different implementation languages.

In a model-centric approach, models of the system are established in sufficient
detail that the full implementation of the system can be generated from the models
themselves. To achieve this, the models may include, for example, representations of
the persistent and non-persistent data, business logic, and presentation elements. Any
integration to legacy data and services may require that the interfaces to those ele-
ments are also modeled. The code generation process may then apply a series of pat-

4 In some cases much more than code stubs can be generated depending on the fidelity of the
models.
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terns to transform the models to code, frequently allowing the developer some choice
in the patterns that are applied (e.g., among various deployment topologies). To fur-
ther assist in the code generation, this approach frequently makes use of standard
or proprietary application frameworks and runtime services that ease the code gen-
eration task by constraining the styles of applications that can be generated. Hence,
tools using this approach typically specialize in the generation of particular styles of
applications (e.g., IBM Rational Rose Technical Developer for real-time embedded
systems, and IBM Rational Rapid Developer for enterprise IT systems). However, in
all cases the models are the primary artifact created and manipulated by developers.

A model-only approach is at the far-right end of the modeling spectrum. In this
approach developers use models purely as thought aids in understanding the business
or solution domain, or for analyzing the architecture of a proposed solution. Models
are frequently used as the basis for discussion, communication, and analysis among
teams within a single organization, or across multi-organizational projects. These
models frequently appear in proposals for new work, or adorn the walls of offices
and cubicles in software labs everywhere as a way of understanding some complex
domain of interest, and establishing a shared vocabulary and set of concepts among
disparate teams. In practice the implementation of a system, whether from scratch
or updating an existing solution, may be practically disconnected from the models.
An interesting example of this approach can be seen in the growing number of orga-
nizations which outsource implementation and maintenance of their systems while
maintaining control of the overall enterprise architecture.

3 MDA Principles

There are four principles that underlie the OMG’s MDA approach:

(1) Models expressed in a well-defined notation are a cornerstone to system under-
standing for enterprise-scale solutions.

(2) Building systems can be organized around a set of models by imposing a series
of transformations between models, organized into an architectural framework
of layers and transformations.

(3) A formal underpinning for describing models in a set of metamodels facilitates
meaningful integration and transformation among models, and is the basis for
automation through tools.

(4) Acceptance and broad adoption of this model-based approach requires indus-
try standards to provide openness to consumers, and foster competition among
vendors.

To support this approach the OMG has defined a specific set of layers and trans-
formations that provide a conceptual framework and a vocabulary for MDA. No-
tably, OMG identifies four layers: Computation Independent Model (CIM), Platform
Independent Model (PIM), Platform Specific Model (PSM) described by a Platform
Model (PM), and an Implementation Specific Model (ISM). This is illustrated in Fig.
2.
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Fig. 2. The layers and transformations of MDA

A key aspect of the MDA approach is to recognize that transformations can be
applied to abstract descriptions of some aspect of a system to add more detail to
that description, refine that description to be more concrete, or to convert between
representations. Three ideas are important here:

• Distinguishing different kinds of models allows us to think of software and sys-
tem development as a series of refinements between different model representa-
tions. These models and their refinements are a critical part of the development
methodology for situations that include refinements between models representing
different aspects of the system, adding further details to a model, or converting
between different kinds of models.

• One way to consider the models is to classify them in terms of how explicitly
they represent aspects of the platforms being targeted. In all software and system
development there are important constraints implied by the choice of languages,
hardware, network topology, communications protocols and infrastructure, and
so on. Each of these can be considered elements of the solution “platform.” An
MDA approach helps us to focus on what is essential to the solution being de-
signed separate from the details of that “platform.”

• The notion of what is a “platform” is rather complex, and highly context depen-
dent. For example, in some situations the platform may be the operating system
and associated utilities; in some situations it may a technology infrastructure rep-
resented by a well-defined programming model such as J2EE or .NET; in other
situations it is a particular instance of a hardware topology. Whatever we con-
sider the “platform,” it is important to think more in terms of models at different
levels of abstraction used for different purposes, rather than be too distracted by
defining what a “platform” means.
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• By thinking of software and system development as a set of model refinements,
the transformations between models become first-class elements of the devel-
opment process. This is important because a great deal of work takes places in
defining these transformations, often requiring specialist knowledge of the busi-
ness domain, the technologies being used for implementation, or both. Efficiency
and quality of systems can be improved by capturing these transformations ex-
plicitly and reusing them consistently across solutions. Where the different ab-
stract models are well-defined, standard transformations can be used. For exam-
ple, between design models expressed in UML and implementations in J2EE we
can frequently use well-understood transformation patterns from UML to J2EE
that can be consistently applied, validated, and automated.

Underlying these model representations, and supporting the transformations, the
models are described in a set of metamodels. The ability to analyze, automate, and
transform models requires a clear, unambiguous way to describe the semantics of
the models. Hence, the models intrinsic to a modeling approach must themselves be
described in a model, which we call a metamodel. So, for example, the semantics and
notation of the UML are described in metamodels. Tool vendors turn to the standard
metamodels of UML when they want to implement the UML in a standard way. For
example, the UML metamodel describes in precise detail the meaning of a class,
the meaning of an attribute, and the meaning of the relationships between these two
concepts.

The OMG recognized the importance of metamodels and formal semantics for
modeling as essential for their practical use. As a result, OMG defined a set of meta-
modeling levels, and defined a standard language for expressing metamodels, the
Meta-Object Facility (MOF). A metamodel uses MOF to formally define the abstract
syntax of a set of modeling constructs.

The models and the transformations between them will be specified using open
standards. As an industry consortium, the OMG has championed a number of impor-
tant industry standards for specifying systems and their interconnections. Through
standards such as CORBA, IIOP, UML, and CWM the software industry is enjoy-
ing a level of system interoperability that was previously impossible, Furthermore,
tool interoperation is also facilitated as a result of tool interchange standards such as
MOF and XMI.

3.1 A Simple Example

In Fig. 3 we show a simplified example of a Platform Independent Model (PIM) and
its transformation into three different Platform Specific Models (PSMs).

In Fig. 3 we show a simple PIM representing a customer and an account. At
this level of abstraction the model describes important characteristics of the domain
in terms of classes and their attributes, but without making any platform specific
choices about which technologies will be used to represent them. Specific mappings,
or transformations, will be defined to create the PSMs. Three are illustrated, together
with the standards that are used to express the mappings. For example, one approach
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Fig. 3. A simplified example of PIM-to-PSM mappings

is to take the PSM expressed in the UML and export it in XMI format using standard
definitions expressed as XML Schema Definitions (XSDs) or Document Type Defin-
itions (DTDs). This can then be used as input to a code generation tool that produces
interface definitions in Java for each of the classes defined in the UML. Usually a
set of rules is built into the code generation tool to perform the transformation. How-
ever, often the code generation tool allows those rules to be specifically defined as
templates in a scripting language.5

3.2 Summary

Following a long history of the use of models to represent key ideas in both problem
and solution domains, MDA provides a conceptual framework for using models and
applying transformations between models as part of a controlled, efficient software
development process. The following ideas were highlighted:

• Models help people understand and communicate complex ideas.
• Many different kinds of elements can be modeled depending on the context.

These offer different views of the world that must be reconciled.
• We see commonality at all levels of these models – in both the problems being

analyzed and in the proposed solutions.
• Applying the ideas of different kinds of models and transforming them between

representations provides a well-defined style of development, enabling the iden-
tification and reuse of common approaches.

5 More detailed examples of this will be described later. However, you may wish to take a
look at commercial examples of MDA in action such as IBM Rational’s Rose Technical
Developer or Rapid Developer products (www.ibm.com/rational), or at open source
MDA tools applying this approach (e.g., AndroMDA (www.andromda.org) or Jamda
(jamda.sourceforge.net)).
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• The OMG has provided a conceptual framework and a set of standards to express
models, model relationships, and model-to-model transformations in what it calls
“Model-Driven Architecture”.

• Tools and technologies can help to realize this approach, and make it practical
and efficient to apply.

4 Automating Generation with Patterns and Transformations

Modeling has had a major impact on software engineering, and it is critical to the
success of every enterprise-scale solution. However, there is great variety in what the
models represent and how those models are used. An interesting question is: which
of these approaches can we describe as “model-driven?” If I create a visualization of
some part of a system, does that mean I am practicing MDA? Unfortunately, there is
no definitive answer. Rather, there is a growing consensus that MDA is more closely
associated with model-driven approaches in which code is (semi-)automatically gen-
erated from more abstract models, and which employs standard specification lan-
guages for describing those models and the transformations between them.

In fact, models are the stepping stones on the path between a description of the
business need and the deployable runtime components. As the system under devel-
opment evolves, the models themselves become more complete, accurate, and con-
sistent with each other. The focus of effort also shifts from the models at the higher
level of abstraction toward those at lower levels. Ultimately these models are used to
directly create the deployable components.

4.1 How Models Evolve

There are two main activities that happen with models: refinement and transforma-
tion. Model refinement is the gradual change of a model to better match the desired
system. The model is refined as more information is known and understood about
the system. A model may also be refined for purely internal reasons (i.e., refactor-
ing). As the various models evolve, dependent models will also need to change in
response. By the end of each iteration of the development cycle, however, all the
models should be consistent with each other.

Models are refined either manually or through some form of automation or as-
sisted automation. Automation can be in the form of rules for model refinement
implemented as executable patterns or assets. When a pattern is applied to a model it
modifies or rearranges the model elements to resemble the pattern. The application
of a pattern adds new elements or properties to the model. When a pattern is applied
it may involve some user assistance – for example, prompting the developer for an
existing model element to bind a pattern parameter with, or other decisions that need
to be resolved for the pattern to be executed.

Model transformations, on the other hand, involve two or more models. The most
typical example is a high-level abstraction model (a “Platform Independent Model”
– PIM) being transformed into a low-level abstracted and technology-dependent one
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(a “Platform Specific Model” – PSM). For example, a UML PIM could represent
a logical data model and consist of a number of entity classes, each with a number
of persistent attributes. This model could be transformed through automation into a
UML data model that captures the same underlying entities, but now from the view-
point of database tables. The data model could in turn be used to directly generate
SQL scripts that define the database, and could be directly executed on a specific
database management system (DBMS).

Model transformations are not necessarily unidirectional. It is possible for some
model transformations to be bidirectional. For example, a platform-specific UML
model of several Entity JavaBean (EJB) classes could be “synchronized” with the
source code implementing these EJBs. New elements (i.e., methods, attributes, as-
sociations) defined in the model would generate appropriate elements in the source,
and any new elements created in the source (or removed) would generate appropriate
elements (or be removed) in the model.

4.2 Understanding Model Transformation

Defining and applying model transformations are critical techniques within any
MDA style of development. Model transformations involve using a model as one of
the inputs in the automation process. Possible outputs can include another model,
or varying levels of executable code. In practice there are three common model
transformations: refactoring transformations, model-to-model transformations, and
model-to-code transformations.

(1) Refactoring transformations reorganize a model based on some well-defined cri-
teria. In this case the output is a revision of the original model, called the refac-
tored model. An example could be as simple as renaming all the instances where
a UML entity name is used, or something more complex like replacing a class
with a set of classes and relationships in both the metamodel and in all diagrams
displaying those model elements. This is illustrated in Fig. 4 which shows a
simple refactoring transformation that extracts a class’s interface.

(2) Model-to-model transformations convert information from one model or mod-
els to another model or set of models, typically where the flow of information
is across abstraction boundaries. An example would be the conversion of one
type of model into another, such as the transformation of a set of entity classes
into a matched set of database schema, Plain Old Java Objects (POJOs), and
XML-formatted mapping descriptor files. This conversion is illustrated in Fig.
5a through Fig. 5d. Figure 5a shows the high-level entity model as a PIM. Figure
5b shows the resulting logical data model and is considered in this context to be a
PSM. Figure 5c shows the matching Java objects, and Fig. 5d shows components
that represent the persistence descriptor files.

(3) Model-to-code transformations are familiar to anyone who has used the code
generation capability of a UML modeling tool. These transformations convert
a model element into a code fragment. This is not limited to object-oriented
languages such as Java and C++. Nor is it limited to programming languages:



12 Alan W. Brown, Jim Conallen, and Dave Tropeano

Product

- id : String
- name : String
- supplier : Supplier

- price : Currency
- description : String

+ getDescription (  )
+ setDescription (  )

+ getId (  )
+ setId (  )
+ getName (  )

+ setName (  )
+ getPrice (  )
+ setPrice (  )
+ getSupplier (  )

+ setSupplier (  )

Product

- description : String
- id : String
- name : String

- price : Currency
- supplier : Supplier

+ getDescription (  )
+ setDescription (  )

+ getId (  )
+ setId (  )
+ getName (  )

+ setName (  )
+ getPrice (  )
+ setPrice (  )
+ getSupplier (  )

+ setSupplier (  )

«interface»

IProduct

+ getDescription (  )

+ getId (  )
+ getName (  )
+ getPrice (  )
+ getSupplier (  )

+ setDescription (  )
+ setId (  )
+ setName (  )

+ setPrice (  )
+ setSupplier (  )
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Fig. 4. An example of a refactoring transformation

configuration, deployment, data definitions, message schemas, and others kinds
of files can also be generated from models expressed in notations such as the
UML. Model-to-code transformations can be developed for nearly any form of
programming language or declarative specification. An example would be to
generate Data Definition Language (DDL) code from a logical data model ex-
pressed as a UML class diagram. This is illustrated in Fig. 6, which shows the
DDL generated with the example database PSM shown in Fig. 5b.

4.3 Applying Model Transformations

Having described different kinds of model transformations, we also note that in prac-
tice there are several ways in which model transformations can be applied. In MDA
approaches there are four categories of techniques for applying model transforma-
tions:

• Manual. The developer examines the input model and manually creates or edits
the elements in the transformed model. The developer interprets the information
in the model and makes modifications accordingly.

• Prepared Profile. A profile is an extension of the UML semantics in which a
model type is derived. Applying a profile defines rules by which a model is trans-
formed.

• Patterns. A pattern is a particular arrangement of model elements. Patterns can
be applied to a model and result in the creation of new model elements in the
transformed model.
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CREATE TABLE T_CONTACT (
CONTACT_ID CHAR ( 9 ) NOT NULL,
LAST VARCHAR ( 30 ) NOT NULL,
FIRST VARCHAR ( 50 ) NOT NULL
);

CREATE TABLE T_ADDRESS (
ADDRESS_ID INTEGER NOT NULL,
LINE1 VARCHAR ( 50 ) NOT NULL,
LINE2 VARCHAR ( 50 ) NOT NULL,
CITY VARCHAR ( 30 ) NOT NULL,
ZIP CHAR ( 10 ) NOT NULL,
STATE_CODE_ID CHAR ( 2 ) NOT NULL,
HOME CHAR ( 9 ) NOT NULL,
OFFICE CHAR ( 9 ) NOT NULL
);

ALTER TABLE T_CONTACT ADD CONSTRAINT T_C_Constraint1
PRIMARY KEY ( CONTACT_ID );

ALTER TABLE T_ADDRESS
ADD CONSTRAINT T_A_Constraint1
PRIMARY KEY ( OFFICE, HOME, ADDRESS_ID );

ALTER TABLE T_ADDRESS ADD CONSTRAINT T_A_Constraint6
UNIQUE ( OFFICE );

ALTER TABLE T_ADDRESS ADD CONSTRAINT T_A_Constraint4
UNIQUE ( HOME );

ALTER TABLE T_ADDRESS
ADD CONSTRAINT T_A_Constraint5 FOREIGN KEY ( OFFICE )
REFERENCES T_CONTACT ( CONTACT_ID )
ON DELETE CASCADE
ON UPDATE NO ACTION;

ALTER TABLE T_ADDRESS
ADD CONSTRAINT T_A_Constraint3 FOREIGN KEY ( HOME )
REFERENCES T_CONTACT ( CONTACT_ID )
ON DELETE NO ACTION
ON UPDATE NO ACTION;

Fig. 6. An example of a model-to-code transformation
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• Automatic. Automatic transformations apply a set of changes to one or mode
models based on predefined transformation rules. These rules may be implicit
to the tools being used, or may have been explicitly defined based on domain
specific knowledge. This type of transformation requires that the input model be
sufficiently complete both syntactically and semantically, and may require mod-
els to be marked with information specific to the transformations being applied.

The use of profiles and patterns usually involves developer input at the time of
transformation, or requires the input model to be “marked”. A marked model con-
tains extra information not necessarily relevant to the model’s viewpoint or level of
abstraction. This information is only relevant to the tools or processes that transform
the model. For example, a UML analysis model containing entities with string types
may be marked variable or fixed length, or it may be marked to specify its max-
imum length. From an analysis viewpoint just the identification of the string data
type is usually sufficient. However, when transforming a string-typed attribute into,
say, a database column type, the additional information is required to complete the
definition.

5 Summary

MDA is a work in progress. The very definition of what “MDA” means is evolv-
ing. In the narrowest of contexts, it is about different abstract models of a system,
and well-defined model transformations among them. In the more general sense, it
is about having models at varying levels of abstraction as the basis for software ar-
chitecture that ultimately drive into various implementation technologies. So at this
time, there is very broad interpretation of MDA to the point that many organiza-
tions and solutions claim “support” for, or “conformance” to, MDA. In this paper
we emphasize MDA as an emerging set of standards and technologies focused on
a particular style of software development – one that highlights the advantages of
modeling at various levels of abstraction, and, most importantly, on the integration
and flow of information through these models. This approach to software develop-
ment allows developers to contribute to the project through the types of models that
best match the type of information and decisions that they make. This approach also
allows senior project members to maximize their effectiveness through their defini-
tion and implementations of model-to-model transformations. Additionally, system
analysts, testing, and quality assurance staff can leverage models for analysis of the
system and its performance before it is complete.
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Summary. Model transformations are at the heart of model-driven software development
(MDSD). As a typical example, models of a higher level of abstraction are transformed into
models that are closer to the target platform. However, there are also other forms of such
transformations: for example, a model at a certain level of abstraction can be evolved by
applying specific designs or modeling patterns.

We believe that a systematic classification of the kinds of transformations that are per-
formed during an MDSD activity is of great assistance in understanding such transformations
and in comprehending the sources of possible errors and difficulties. This chapter provides a
systematic look at model transformations and presents a detailed classification scheme that
we have found suitable. To support the soundness of this scheme, we provide examples for
its application (i.e., for classifying typical transformations) and we demonstrate how such a
classification can assist in understanding some of the problems that can occur within MDSD.

1 Foundation

Before the various kinds of model transformations can be discussed, the central term
“model” has to be clarified. In general, “a model is a set of statements about some
system under study” ([384], p. 27).

To enable the model users to concentrate on the significant system aspects, thus
allowing them to handle complexity, any useful model will exhibit some form of
abstraction from the system under study. One form of abstraction is the selection of
relevant from irrelevant or random properties, which is known as reduction (cf. [281],
p. 6). Other important forms of abstraction are generalization and classification. Gen-
eralization is a means by which differences among similar elements are ignored to
form an entity in which the similarities can be emphasized ([346], p. 155). Classifica-
tion is the process of identifying types, which are also known as concepts (cf. [327],
p. 12-2 and [346], p. 156). Classification is the basic form of abstraction found in
object-oriented or object-based modeling, where object types are the main elements
of conceptual models and classes their respective realization in design models (cf.
[327], p. 12-3).
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In traditional scientific disciplines models are usually descriptive, which means
that a model can be considered a “correct” description of the system under study if
all its statements are true for the system (see [384], p. 27).

In the case of software systems, a model can also be considered as the specifica-
tion of a system or rather a whole set of systems that should be built. In the context of
such a prescriptive (cf. [281], p. 8) form of model application, which can be found in
other engineering disciplines also, a specific system is considered as being “correct”
relative to its specification “if no statement in the model is false for the system under
study” ([384], p. 27). During software development, the models are refined (i.e., the
level of abstraction is reduced), whereby a subset of the initial set of systems is se-
lected. If successful, this process leads to the final software product, which realizes
the desired system in the end.

As is shown in Fig. 1, each model is based on a formalism (or language), which
precisely defines the model’s syntax (or notation) and its semantics (or meaning).
The syntax of a formalism is made up of the concrete and the abstract syntax. The
concrete syntax specifies the readable representation of the abstract notational ele-
ments. The semantics consists of the dynamic and the static semantics. The static
semantics, which should be more correctly called well-formedness rules (cf. [195],
p. 16), is implied by the dynamic semantics and represents restrictions on the set of
valid models that can be expressed using the underlying formalism.

Formalism

Concrete
Syntax

Dynamic
Semantics

Static
Semantics

bases on

represents
assigns 

implies

restricts
Model

Abstract
Syntax

System(s)

abstracts from/

meaning to

specifies

Fig. 1. System, model, and formalism (adapted from [55])

With these definitions of system, model, and formalism, we can more formally
describe transformations that can occur during software development. Using a modi-
fied form of a formalization that was introduced by Caplat and Sourrouille in [55],
we assume that M is the model of a system S (or a specification for a set of systems)
and F is the formalism in which the model is described. Any transformation t can
then be formulated as

t : M1(S1)|F1
→ M2(S2)|F2

(1)

where M1 is the source model and M2 is the target model of the transformation.
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2 Classification of Model Transformations

Note that the transformation t that has been introduced in (1) implies neither that
the source model will be modified nor that the target model will be created without
modifying the source model. This characteristic should be considered as being or-
thogonal to the transformation that is described by t. Typically, one would consider
the transformation of the latter kind as a query because it is free of side-effects (cf.
[12]).

A transformation can be monolithic (or atomic) or can be composed of many
separate steps, which implies a step-wise transformation (cf. [200]).

Caplat and Sourrouille [56] further distinguish model transformations as being
endogen if the formalism of source and target model is the same (F1 = F2) or being
exogen otherwise (F1 �= F2).

A further distinction between different kinds of transformations can be exercised
upon the purpose of the transformation. There exist transformations that are per-
formed to evolve the model and are therefore called horizontal transformations. If
a transformation is employed for implementing the model, i.e., for transforming the
source model into a model that is closer to the run-time platform, we speak of such
a transformation as being vertical (cf. pp. 335–339 in [79]). In the first case, the for-
malism of the source and target model is the same (endogen transformation), where
as in the latter case the target model’s formalism contains elements that describe
concepts that are closer to the final implementation platform (see p. 119 of this book
for an in-depth discussion of the term “platform”). Such a vertical transformation is
commonly known as code generation, when the target model is the actual implemen-
tation code (see [12]).

It should be noted that although vertical transformations are exogen transfor-
mations, not all exogen transformations have to be vertical transformations. As an
example, static analysis tools operate in the reverse direction. These tools usually
have implementation code as an input and compute a more abstract model as an out-
put. An example is the computation of the cyclomatic complexity for individual code
components (see [229], pp. 348–350).

Another characterization can be performed based on the degree to which model
transformations can be automated. As each model transformation represents a query
and modification of models, such models have to be machine readable and modifiable
for automating such activities. Only formal aspects of a model fulfill this requirement
and are thus available for a manipulation through software tools (cf. [327]). Conse-
quently, if the source and target models’ syntaxes are fully formalized, a fully auto-
matic transformation is conceivable. Otherwise, manual steps are required allowing
for partially automated or manual transformations only.

If a model transformation is exercised by a software tool, this transformation
will always be performed in a repeatable and deterministic way. Also, if the trans-
formation specification has been systematically tested (see p. 219 of this book) or
formally verified (cf. [439]), the chance for introducing errors into the target model
is considerably reduced compared to the manual execution of such an activity.
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Finally, model transformations can be classified by the technique that is used for
describing (resp. executing) the transformations. Two basic approaches for such a
description exist: an operational and a declarative approach.

In a declarative approach, transformations are described through rules, which
are specified by pre- and post-conditions. The pre-condition describes the state of
the model before the transformation is executed. The post-condition specifies the
state after a successful transformation. As most of the models or specifications can
be expressed as graphs, many of the declarative approaches that are used today are
graph transformations (e.g., see p. 91 of this book).

With declarative approaches, a specification of the transformation can be achie-
ved, which is often called a mapping (see [256]). Nevertheless, we will not distin-
guish between “transformation” and “mapping” in the remainder of this chapter but
will use the terms interchangeably for readability reasons.

In contrast to declarative approaches, in operational (or imperative) approaches,
the activities which must be performed to transform the source to the target model
are described explicitly by a sequence of actions (see p. 480 in [458]).

Czarnecki and Helsen present further approaches for classifying transformations
[80]. Among other aspects, they discuss the notions of model-to-model and model-
to-code translations and examine the differences of transformation approaches based
on the representation (syntax) of the transformation rules or the form of typing that
the “rule language” offers. Favre [120] distinguishes between transformation func-
tions (i.e., transformation specifications) and transformation instances (i.e., the ap-
plication of a transformation specification to a specific source model).

Although all of the above types of transformations may provide a suitable clas-
sification when examining certain properties of model-driven software development
(MDSD), we see the need for yet another classification scheme that allows one to
reflect on some of the potential pitfalls of MDSD. This scheme is introduced in the
following section and is followed by examples for its application in Sect. 3.

2.1 Fine-Grained Classification Scheme

In this section, a fine-grained classification scheme is introduced that considers the
possible variations of the systems, the potential changes of models, and the varia-
tions in the respective formalisms. To begin with, Fig. 2 shows an overview of the
identified types of transformations.

As the reader can observe, we have chosen a very simple scheme for naming
the different types of transformations by following the graphical layout of the fig-
ure, which should be easy to remember. With this classification scheme, each kind
of transformation can be described by a type from the left-hand side of the figure
together with a type from the right-hand side of the figure.

Not all of the above transformations are “true” model transformations, as some of
them do not require any modification of models (M1 = M2). However, we will show
that such mappings exist in reality and that these can be helpful when evaluating
model transformations.



A Systematic Look at Model Transformations 23
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F1 F2
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of the system a model change

Fig. 2. Classification of Model Transformations

2.2 System and Model Transformations

We start the detailed discussion of our classification scheme by presenting the types
of transformations that are introduced on the left-hand side of Fig. 2.

Type S0 Transformations

At the beginning of this chapter, the nature of a model (or a specification) as being
an abstraction of a set of systems has been introduced. It is this very nature of a
specification that allows several systems to be represented by the same model, thus
leading to a “transformation” that can be classified as S0. Whenever two systems
differ only in properties either that have been eliminated in the model or that are not
reflected in the abstract model elements, we can observe a “transformation” of type
S0 between these two systems.

An illustrative example for the abstraction of such a property is provided by
Petri nets. In general, a Petri net is a directed bipartite graph with two distinct types
of nodes: places and transitions. To describe the dynamics of a Petri net, tokens
that can reside within places are introduced. A transition is enabled if and only if
there is at least one token in each input place of the transition. When a transition is
enabled, it can fire, upon which a token is removed from each of the input places and
a token is generated in each of the output places (for a more detailed introduction
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see, e.g., [359]). As the enabling of a transition only specifies its potential for firing,
each system that demonstrates any of the possible firings of transitions is a correct
realization of such an abstract Petri net model.

Type 0M Transformations

There exist model modifications that result in an equivalent model with respect to
the modeled system (type 0M).

An obvious example is that renaming an attribute i to countingVariable
will result in the very same software system. In fact, there exist tools to obscure
variable names in programs to make it difficult to understand the code when it is
de-compiled. The user of the program will discover no difference whatsoever.

However, determining the identity of two systems is far from trivial. If, instead of
using the variable from above, we were to introduce accessor and mutator methods
(i.e., getCountingVariable() and setCountingVariable()), the sys-
tems might still be identical from a given point of view. Nevertheless, the detailed
run-time behavior would be different, caused by the timing penalty that is imposed
by the method calls. As Kleppe and Warmer observe, there does not seem to be a
solution to this problem (cf. [256], p. 19). Yet, for our considerations we believe it
is sufficient to look at this problem in a more idealistic way and assume that we can
identify equality (even if this was possible for theoretical considerations only).

Type SM Transformations

A transformation of type SM comes in two facets. On the one hand, there is the
obvious case that a model change implies the change of the specified system (type
SMa). For example, if a UML object model is extended by a new class, the thus
extended system will most certainly differ from the original system.

On the other hand, the observed changes of the model as well as the system might
be attributed to the superposition of two other types of transformations (type SMb).
This is possible if a model change does not imply a change of the system (type 0M),
yet the system possesses properties that are not described in the model (type S0).

2.3 Model and Formalism Transformations

Now that the different types of transformations considering the variations of model
and system have been discussed, the kinds of transformations that can be found on
the right-hand side of Fig. 2 are presented.

Type 0F Transformations

A transformation of type 0F can lead to a change of presentation of the model only,
i.e., the concrete syntax of formalism F1 will differ from that of formalism F2. A
change of the abstract syntax or even the semantics of the formalism would force a
more drastic change (see type MF below).
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As an example of such a transformation, we introduce the Specification and De-
sign Language SDL (see [330]). SDL models can be described in graphical form
(SDL-GR) as well as in a textual representation (SDL-PR). In Fig. 3 both forms are
presented. The model describes a state transition from Z1 to Z2 after the reception
of a signal (or message) S1.

Z1

S1

Z2

SDL-GR SDL-PR

state Z1;

input S1;

nextstate Z2;

endstate;

Fig. 3. Different representations of an identical model

Type M0 Transformations

Transformations of type M0 could be considered as “true” model transformations
because the model information is changed while preserving the model’s formalism.

The above example of adding a UML class to an object model falls into this cat-
egory as well as the change of an existing model element (e.g., renaming an attribute
of a UML class). Type M0 transformations are the typical horizontal transformations
that we have introduced in Sect. 2.

Type MF Transformations

This last type of transformation (type MF) exhibits two facets, as is the case for type
SM. First, a change of formalism can imply a change of the model (type MFa). This
situation always occurs when the abstract syntax or the semantics of the formalism
changes.

To illustrate, if one changes the formalism from UML object diagrams (where
objects have dependent control flows per default) to the modeling language SDL
(where objects are realized as independent processes), this must have wide-reaching
consequences for the model (and if more than one object is modeled, for the modeled
system as well).

Additionally, a superposition (type MFb) is possible, i.e. although a (syntactical)
change of the formalism has no consequences (type 0F), a “true” model transforma-
tion (type M0) is performed.

3 Using the Classification Scheme

After the different types of transformations have been introduced and have been il-
lustrated with simple examples, this section presents other more complex examples
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for the application of the classification scheme. These include the analysis of trans-
formation steps that are performed by a high-level language compiler as well as
the classification of activities that are performed within a transformational software
development process. Additionally, common transformations that can be found in
state-of-the-art MDSD approaches (like OMG’s Model-Driven Architecture [294])
are evaluated. An example is provided for applying the scheme when a horizontal
model transformation is performed.

3.1 High-level Language Compiler Transformations

A traditional field of “model” transformations can be found when considering the
concepts of high-level language compilers (like C++ or Java compilers, e.g., see
[10]).

Source “model” Ms for these compilers is the source code in a high-level pro-
gramming language that should be transformed into the target “model” Mt, i.e., the
machine or byte code of the target platform or virtual machine. As a first step, an
abstract syntax tree Ma

s is created by parsing the source code (concrete syntax). This
tree, which typically can be found as an internal data structure of the compiler, is
then transformed into an abstract syntax tree Ma

t that reflects the target model. From
this abstract syntax tree, the final “model” in the concrete syntax of the machine
or byte code is attained through an unparsing activity. To summarize, the following
transformations are performed:

Ms
0F
−→ Ma

s
M0
−→ Ma

t
0F
−→ Mt (2)

Transforming the source model to its abstract representation is a pure formalism
transformation that does not affect the actual model. The same holds for the unpars-
ing activity. Therefore, both are of type 0F. The transformation of the abstract syntax
tree, however, requires a model change because the concepts of the source and target
language might differ, e.g., there will be no such concept like a for-loop in the ma-
chine or assembler language. Therefore, this usually must be mapped to a conditional
branch construct (like bne or beq).

It should be noted that in many compiler implementations, the transformation is
abbreviated by directly transforming the source to the target model, i.e., by employ-
ing a transformation of type MFa.

3.2 Transformational Software Development

The essence of transformational software development is that “from a formal speci-
fication of a problem to be solved, programs correctly solving that problem are
constructed by stepwise application of formal, semantics-preserving transformation
rules” ([345], p. V). It is this very focus on semantics-preserving transformations that
allows one to guarantee the correctness of the program by construction.

Typical examples of the application of the transformational approach are the
derivation of operational specifications (or code) from a declarative model of the



A Systematic Look at Model Transformations 27

problem as depicted by Partsch in [345], p. 189. The transformation rules that are
presented by the author are special forms of inference rules, the systematic appli-
cation of which will lead to an operational specification. Because of the semantics-
preserving nature of the inference rules, all transformations within such a transfor-
mational software process can be classified as being of type M0.

To allow for the smooth transition from the formal specification to the actual pro-
gram, wide-spectrum languages are employed. These languages, in addition to speci-
fication constructs (i.e., more abstract concepts), contain concepts that are known
from programming languages (cf. [345], p. 51]. This means that a wide-spectrum
language is a formalism with a single and consistent set of conceptual elements ([32],
p. 15). Based on our classification scheme, this implies that transformations between
“models” that are expressed in such a language are of type 0M.

3.3 MDSD Transformations

As an important and current example the application of our classification scheme,
we discuss the typical kind of transformation that occurs within most of today’s
model-driven software development approaches, of which the OMG’s Model-Driven
Architecture MDA (cf. [294]) is the most prominent example. However, also gen-
erative approaches that use the Specification and Design Language SDL (see above)
are commonly found here.

In all these cases vertical transformations are applied to generate models in a
less abstract formalism (target model) from models that are described in a more ab-
stract formalism (source model). Less abstract here means that the target model is
closer to the run-time platform than the source model was. In the context of the
MDA these transformations occur between the Platform Independent Model (PIM)
and the Platform Specific Model (PSM) as well as between the PSM and the ac-
tual implementation code. Currently, many of the MDA tools skip the generation of
the intermediate PSM model altogether and directly generate implementation code.
Well-known examples of such tools are iLogix’s Rhapsody, gentleware’s Poseidon,
or ARTiSAN’s Real-Time Studio. For the modeling language SDL, implementation
code is typically also directly generated from models, e.g., when using Telelogic’s
Tau SDL Suite.

It is this very transformation of source models to implementation code that we
want to evaluate in more detail. However, the results could also apply to any vertical
transformation of more abstract source to less abstract target models (cf. [256]).

Understanding what occurs during code generation becomes important especially
when the running system is being tested. The assumption that the properties of the
source model and the properties of the implementation code are identical can lead
to the incorrect identification of errors in the source model, or, worse, can obscure
errors.

As both the source model and the implementation code are models (both more or
less abstract from concrete systems), the creation of the implementation code from
the source model (the PIM in the case of MDA) is a kind of model transformation.
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As the formalism of the more abstract model and the formalism of the implemen-
tation code usually differ in many aspects, such a transformation inevitably implies
a major change of the model. One example of a transformation from a PIM to im-
plementation code could be the generation of Java classes from UML classes. Using
our classification scheme, such a transformation of the source model to code can be
considered a transformation of type MFa, i.e., a “true” formalism and model change.

Ideally, the systems that are realized by the implementation code should be a sub-
set of the set of systems that is described by the specification (semantics-preserving
refinement, see Sect. 3.2). Only this relationship would allow for the verification of
the considered properties of the specification (the source model) by employing the
implementation code for testing. Within the MDA, a model transformation is even
defined to be “the process of converting one model to another model of the same
system” ([294], p. 2-7). We therefore would have to require a transformation of type
0M. As Kleppe and Warmer observe in [256], such a transformation is only realistic
in an ideal situation.

The reason is that in a practical context, the required transformation of 0M is
complicated by the transformation of type MFa which was identified above. This
implies, in many cases, that the transformation of type 0M cannot even be realized.
This can be attributed to the fact that the formalisms of source and target models not
only differ considering their syntax but almost always differ in their semantics, i.e.,
in the basic paradigm of the conceptual elements (cf. [210], pp. 7–8) . Preserving the
semantics of the models during an MFa-type transformation therefore almost always
will be impossible (cf. [256]).

This fact presents a notable difference to the types of transformations that have
been illustrated in the previous sub-sections. Traditional compilers work with input
“models” that are at a low enough level such that “purely local optimizations are
sufficient” ([27], p. 41). A similar observation holds for transformational program
development, when a wide-spectrum language, which presents a formalism with a
single and consistent set of conceptual elements ([32], p. 15), is used.

Looking at MFa transformations in more detail, three different kinds of mappings
of source model elements to counterparts in the target model can be identified:

(1) Non-ambiguous mapping: One or more model elements of the source model can
be mapped to one ore more elements in the target model without losing their
meaning (example: an attribute of a UML class can be mapped to a variable in
Java). If this mapping can be applied for all model elements, we would arrive at
the ideal case of having a transformation of type 0M.

(2) Selection: One or more elements of the source model can be mapped to ele-
ments of the target model only after additional decisions have been made. Con-
sequently, such a mapping is ambiguous, which implies that a selection among
several alternative mappings must be performed.

(3) Approximation: For one or more source model elements, there exist no (seman-
tically equivalent) counterparts in the formalism of the target model. Therefore,
the elements of the source model have to be approximated as best as possible by
using elements of the target model.
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The last two cases are obviously the ones that prohibit the desired transformation
of type 0M. If there is no direct or no non-ambiguous mapping from elements in the
source model to elements in the target model, the resulting systems can hardly be
identical.

To give the reader an in-depth understanding of the critical situations that can
occur when a selection or approximation has to be exercised, we will present two
examples in the SDL. This language is comparable in many ways to the current
version of the UML (i.e., UML 2.0). Therefore, similar observations would apply.

Selection

A situation that requires a selection of a mapping alternative occurs when the parallel
processes that are described in SDL have to be realized within a monolithic operating
system process, which is typically implemented in the programming language C (this
is Telelogic Tau’s approach). To perform such a realization, an execution order of the
processes has to be defined to be able to execute them sequentially.

This sequentialization, however, can obscure errors because critical situations, in
which the errors would be visible, will never occur. To illustrate such a situation, we
introduce a small SDL example (see Fig. 4), in which the model architecture as well
as the behavioral description of the individual processes is shown.

system ABCDemo 1(1)
SIGNAL sigA;
SIGNAL sigB;
SIGNAL go;

producerA consumer producerB
chA

sigAgo

chB

sigB go

process consumer 1(1)

idle receiving

go via all 
chA, chB

sigA sigB

idle receiving receiving

process producerA 1(1)

idle

idle go

sigA

idle

process producerB 1(1)

idle

idle go

sigB

idle

Fig. 4. SDL model of a producer/consumer pair

There are three communicating processes: producerA, producerB, and
consumer. Signals from producerB can only be received after producerA has
initially sent a signal sigA to the consumer process (the transition from idle to
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receiving is taken). To start communication, the consuming process sends a go
signal to both producing processes.

Depending on the order of execution (i.e., whether producerA or producerB
is activated first), the consumer process might be able to receive signal sigB or will
lose the signal. These two possible scenarios of execution are shown in Fig. 5 as a
Message Sequence Chart (MSC; cf. [330], pp. 356–359), which is similar to UML’s
sequence diagrams in the form in which it is used here.

If the processes were scheduled according to scenario b) only, the error in the
specification would be obscured, as the potential loss of signals could never be ob-
served. This implies that even if the tests had been passed for a very specific test
case, the test might have failed when a different code generator was used (although
there had been no change of the source model whatsoever).

To increase the confidence of such tests, the selection of the properties should
always be considered. One could, as an example, generate code alternatives that use
a different form of selection and additionally test these alternatives. However, one
should keep in mind that the number of possible combinations that must be evaluated
might soon reach a limit above which the effort for testing is no longer feasible.

Approximation

Signals that are exchanged between SDL processes are stored in signal queues (cf.
[109], pp. 62–63). As a model abstraction, these queues can hold an infinite number
of signals. Because of obvious memory constraints, such queues can only be imple-
mented as data structures with a finite (although dynamic) length, i.e., the infinite
queues are approximated by finite queues. Especially in reactive systems that are
executed on hardware platforms with only small data memories, memory overflows
can easily occur that cannot be attributed to an error in the specification.

The following example, which is a modified form of an SDL model that is pre-
sented in Queins’ Ph.D. thesis ([353], pp. 179–180), depicts this situation in more
detail (see Fig. 6).

Using the timer perT, the sensor process periodically measures a certain
physical value that is sent to the logger process. Initially this process is in the

a) b)

producerBconsumerproducerA

receiving

idle

sigB

sigA

go
go

producerA consumer producerB

receiving

idle

go
go

sigA

sigB 

/* lost */

Fig. 5. Different execution scenarios for SDL model of Fig. 4
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system IODemo 1(1)
SIGNAL readout;
SIGNAL stop;
SIGNAL val(Real);

sensor logger
chA

val

chIO

readout, stop val

process logger 1(2)

logging

val

readoutlogging

readout

process sensor 1(2)

idle

readout

stop

logging

readout

val(v)

readout

val(v)

TIMER perT;

via chIO

idle

idle

perT

v := 
/* measure */

val(v)set(now+dT,
perT)

set(now+dT,
perT)

Fig. 6. SDL model of a data logger

logging state and does not consume the val signals (the rhomboid symbol de-
notes that the signals are kept, i.e. “saved”, in the input queue). As soon as the
logger process receives the readout signal from the environment (i.e., when
the user wants to receive a readout of the logged sensor data), all val signals in the
input queue are consumed and a respective signal is sent to the environment until the
stop signal is received.

Assuming that the period dT of the sensor process is ∆t and the maximal
queue size of our implementation is s (this upper limit can be imposed by either a
static data structure or the actual memory available to the running system), a memory
overflow will occur if the readout signal is not received within s∆t after system
start.

If the arrival of the readout signal can be guaranteed, the observed fault will
not be critical. However, in a reactive system the arrival of external signals can typ-
ically not be guaranteed (the user cannot be forced to read out the data before the
memory overflow occurs). As a consequence, the source model would have to be
changed, although the specification was correct. Unfortunately, this implies that the
chosen abstraction might not have been suitable or that the ideal of MDSD might not
be accomplished as easily as thought.

Additional Properties

In addition to the properties that differ between the systems that are described by the
source and the target model, the target system (in our case the running application)
can exhibit additional properties that have not been described in any of the models.
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This is a natural consequence of the abstraction that has been employed to achieve
the models.

To illustrate, the concrete execution time of an application is a property that is
typically not described by standard UML or SDL models. However, the running
system will exhibit a very specific run-time behavior and concrete execution times
can be measured. Consequently, we can observe a transformation of type S0.

This implies that even if the ideal transformation of type 0M could be achieved
by non-ambiguous mappings, the above fact will render this impossible on a more
detailed look. In the field of software prototyping this observation has lead to the
suggestion that a prototype that has been validated and accepted by the users should
always be kept as part of the overall requirements specification (cf. [54], p. 40). How-
ever, the reasons for that have not been discussed in detail.

3.4 Horizontal Transformations

The realization of the vertical transformations in the context of MDSD approaches
has been the logical next step in the abstraction and automation process that has been
started with high-level language compilers (or even assemblers).

Interestingly, examples of the automation of horizontal (i.e., evolutionary) trans-
formations can rarely be found. This might be attributed to the fact that source code –
even the one of a high-level programming language – is not semantically rich enough
to allow for such an automated evolution. Only with the introduction of modeling
languages and domain specific modeling (e.g., through meta-models) does this seem
to become possible. Czarnecki and Eisenecker even postulate that the more abstract
development information a source model contains, the more automated the support
for model evolution can become ([79], p. 338).

One such transformation is the automatic instrumentation of a model for debug-
ging or testing purposes. In the SDL example, a special output statement could be
added to each transition to monitor the execution of the system. This extension of the
model consequently is a transformation of type M0 (the source and the target models
are SDL models).

Because the instrumentation will produce additional output, the systems that are
finally derived from such an instrumented model will be different from the systems
that are derived from the initial source model. This means that this instrumentation
activity has to be classified as being of type SMa. This poses the problem that the
system that is being tested (the one with the instrumentation) differs from the system
that finally will be deployed, and thus the results of the tests might become question-
able.

Another example of such a vertical transformation is “model refactoring”, which
is introduced in detail by Gray et al. on p. 199 of this book.

4 Conclusion

In this chapter, we have shed light on the essential activity that is performed in
any model-driven software development: model transformation. After the most ba-
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sic terms and current classification schemes were introduced, a more fine-grained
scheme has been presented that considers the differences between the modeled sys-
tem, the model itself, and its formalism.

With this classification scheme, different examples of transformations have been
evaluated. These were transformations performed by high-level language compilers
as well as transformations within a transformational software development process.
Further, important forms of transformations have been discussed for state-of-the-
art MDSD approaches (like MDA), which included vertical transformations (code
generation) and horizontal transformations (where the instrumentation of a model
has been chosen as an example).

With this classification, problems that are eminent in all model-driven software
development approaches have been uncovered and the reasons for their existence
have been explained. In detail, we have illustrated why test results that have been
attained by testing systems that have been automatically derived from specifications
have to be evaluated critically. We believe that understanding what happens during
each type of model transformation is an important prerequisite for properly applying
MDSD approaches and for correctly using the associated tools. Therefore, we hope
that the concepts and views that have been depicted in this chapter will help “model-
driven software developers” in solving their challenging yet enthralling tasks.
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Summary. The high-quality development of critical systems is difficult. We propose to use
the Unified Modeling Language (UML), the de facto industry standard specification language,
as a notation together with a formally based tool support for model-based critical systems
development.

We introduce UML Machines, which is a formal notation designed to reflect properties
of the UML execution semantics relevant to criticality requirements. We use it to define a
foundation that puts models for the different diagrams into context and gives a precise meaning
to mechanisms such as message passing between objects or components specified in different
diagrams, while offering the possibility to analyze criticality requirements.

We present tool support for this approach developed at the TU München, which facilitates
transfer of the methodology to industrial contexts.

1 Introduction

High-quality development of critical systems (be they real-time, security-critical, or
dependable systems) is difficult. Many such systems are developed, deployed, and
used that do not satisfy their criticality requirements, sometimes with spectacular
failures. However, critical systems on whose correct functioning human life and sub-
stantial commercial assets depend need to be developed especially carefully.

Unfortunately, in critical systems development, correctness is often in conflict
with cost. Where thorough methods of system design pose high costs through person-
nel training and use, they are all too often avoided. The Unified Modeling Language
(UML) [318] offers an unprecedented opportunity for high-quality critical systems
development that is feasible in an industrial context:

• As the de facto standard in industrial modeling, a large number of developers are
trained in UML.

∗ http://www4.in.tum.de/̃ juerjens. This work was partially funded by the German Federal
Ministry of Education, Science, Research and Technology (BMBF) in the framework of
the Verisoft project under grant 01 IS C38. The responsibility for this article lies with the
author(s).
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• Compared to previous notations with a user community of comparable size, UML
is relatively precisely defined.

Nevertheless, the UML semantics is given only in prose form [318], leaving room
for ambiguities. However, to provide advanced tool support (for example, automated
checking of behavioral properties of a UML specification) to assist application of
our approach in industry, we need a mathematically precise semantics for UML.

There has been a substantial amount of work towards providing a formal se-
mantics for UML diagrams (including [48, 133, 358, 237]; specifically, [43] gives a
statechart semantics using Abstract State Machines which was a starting point for the
current work). However, most work only provides models for single UML diagrams
in isolation. When trying to give a precise mathematical meaning to whole UML
specifications, one needs to be able to combine the formal models for the different
kinds of diagrams. In this chapter, we provide a formal framework to support this
using of UML Machines.

Our approach is based on Abstract State Machines (ASMs) [44] where states
are represented by algebras. We use ASMs to present our semantics because this
notation, essentially a more formal pseudo-code, seems to be relatively accessible.
At the same time the notation is mathematically precise. For a given proof tool (for
example, the model-checker Spin, Prolog, or the automatic theorem prover Setheo),
we translate the semantics into the relevant input notation (such as Promela, Horn
formulas, or the TPTP notation, resp.). We feel that this approach of using an inter-
mediate representation in ASMs may be more flexible and universally usable than
directly using a notation closer to a given input notation.

For our purpose, we use an extension of ASMs with UML-type communication
mechanisms called UML Machines, inspired by the Algebraic State Machines from
[52]. Also, we define the concept of UML Machine System (UMS) that allows one to
build up specifications in a modular way (corresponding to the use of UML subsys-
tems). We use this to define a semantics for a simplified fragment of UML supporting
the combined use of different kinds of UML diagrams including actions, activities,
and message passing between different diagrams, and which allows one to easily in-
clude different adversary and failure models to analyze specifications for criticality
requirements.

Furthermore, we present work by the UMLsec group at TU München aimed at
the development of automated tools for analyzing UML models for criticality re-
quirements, to facilitate technology transfer to industry.

The work presented here builds on previous work including [238] but extends
to diagram types not treated in [238] (such as sequence diagrams) and to the de-
velopment of tool support for automated verification. Part of the material has been
presented in [241].

Outline

After giving some background in Sect. 1.1, we recall the necessary definitions and
introduce the notion of UML Machine used for our semantics in Sect. 2. We show
how several UML Machines can be composed into a UML Machine System (UMS).
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In Sect. 3, we sketch how we use our framework for a simplified formal semantics
of UML combining different diagram types in the example of UML sequence dia-
grams. In Sect. 4, we explain how UML, together with an XML-based analysis of
UML models, can be used as a basis for a formally based method for critical sys-
tems development. In Sect. 5, we present some information on tools for advanced
XML-based processing of UML models. We describe a framework that incorporates
automated tools for the analysis of UML models against critical requirements. We
end with pointers to related work and a conclusion.

1.1 Overview and Background

Traditionally, there exist different methods for ensuring reliability of critical systems:

Break-And-Fix This approach accepts that deployed systems may fail; whenever
a problem is noticed and identified, the error is fixed. The Break-And-Fix ap-
proach is probably the most obvious one, but it has a lot of drawbacks. It is in-
herently disruptive – fixing the system often implies distributing patches, which
disturbs users, annoys customers, and destroys their confidence. What is worse,
the method is unsafe and insecure – we can never be sure that the new problem
will not disturb critical functionality, or that it will not be spotted at first by a
malicious person, who will try to compromise the system further.

Traditional formal methods, on the other hand, offer very good quality of the devel-
oped critical systems. There has been a lot of successful research in this direc-
tion (for an overview see [240]). However, formal methods are rarely applied
in practice because of the high costs arising from the necessary training for the
developers of the system, and from the construction of the formal specification
of the system.

The UML [431], the de facto industry standard in object-oriented modeling, to-
gether with XML-based processing of UML models, offers an unprecedented oppor-
tunity for high-quality critical systems development that is feasible in an industrial
context:

• A large number of developers are trained in UML, as the de facto standard in
industrial modeling, making less training necessary. Also, UML specifications of
systems under development may already be available for analysis, which again
saves time and cost.

• Compared to previous notations with a user community of comparable size, UML
is relatively precisely defined, opening up the possibility for advanced tool sup-
port to assist the development of safety-critical systems.

• After several years of evolution, an XML/XMI-based standard for UML model
representation has evolved, enabling interchange and automated processing of
the UML models.
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2 UML Machines and UML Machine Systems

UML Machines are based on the Abstract State Machines notion. We recall central
concepts here; for a formal definition see [44]. They are inspired by the Algebraic
State Machines from [52].

In this section we will use the following technical definitions. A multi-set (or
bag) is a set which may contain multiple copies of an element, with notation {{ }}
instead of the usual brackets. For example, {{1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }} is the multi-
set consisting of ten copies of the element 1. For two multi-sets M and N , M � N
denotes their union and M \ N the subtraction of N from M . For a multi-set M
and a set X , we write M�X for the multi-set of those elements in M , preserving
their cardinalities, that are also elements of X . Intuitively, in M�X , all elements
except those in X are filtered out. We write M ⊆ N for two multi-sets M,N if
M�N = M . We write �M� for the set of elements in the multi-set M and �M for
the number of elements in M .

Abstract State Machines

A state A is a non-empty set X containing distinct elements true, false, and undef

together with a set Voc(A) of function names with interpretations in the base set
X . An Abstract State Machine (ASM) consists of an initial state and an update rule,
where the variable assignment of the initial state sends each variable to the value
undef . An ASM is executed by iteratively firing the update rule. Thereby, its current
state is updated; that is, the interpretations of its functions are redefined in terms of
the previous interpretations. The syntax and informal semantics of update rules are
given inductively as follows (the formal semantics can be found in [44]):

skip : causes no change.
f(s̄):=t : updates f at the tuple s̄ to map to the element t.
if g then R else S : If g holds, the rule R is executed, otherwise S.
do − in − parallel R1, . . . , Rk enddo : Ri execute simultaneously, if for any

two update rules f(s̄) := t and f(s̄) := t′, we have t = t′; otherwise the
execution stops.

seq R S endseq : R and S are executed sequentially.
loop v through list X R(v) : iteratively execute R(x) for all x ∈ X .
case v of x1 : do R1 . . . xn : do Rn else S : execute by case distinction.

Extending ASMs to UML Machines

We define UML Machines as an extension of ASMs with a UML-like communica-
tion mechanism that uses buffers. We will use UML Machines to specify components
of a system that interact by exchanging messages from a set Events which are dis-
patched from (resp. received) in multi-set buffers (output queues, resp. input queues).
Note that this way, incoming signals can be processed in an arbitrary order, which is
what is specified by the UML definition.
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Definition 1. A UML Machine (A, inQuA, outQuA) is given by an ASM A and two
multi-set names inQuA, outQuA ∈ Voc(A) such that the rules in A change inQuA

only by removing and outQuA only by adding elements.

The set names inQuA, outQuA model the input buffer and the output buffer of
the UML Machine A. We assume that at the initial state of the UML Machine, they
always have the value ∅.

The behavior of a UML Machine (A, inQuA, outQuA) is captured in the fol-
lowing definition, where a multi-set of input (resp. output) values represents the
input (resp. output) during a time interval of a given finite length. Possible non-
determinism in the UML Machine rules leads to sets of output sequences.

Let toinQuA(X)
def
= inQuA := inQuA � X . Given a UML Machine (A, inQuA,

outQuA), and a sequence I of multi-sets, consider the UML Machine Behav(A(I))

with the vocabulary Voc(Behav(A(I)))
def
= Voc(A) ∪ {outlist(A)}, and the rule

Behav(A(I)) given in Fig. 1. For any given run r ∈ Run(Behav(A(I))) of the
UML Machine Behav(A(I)), after completion of r, outlist(A) contains a sequence
of multi-sets of values outlist(A)

r.

Definition 2. The input/output behavior of a UML Machine (A, inQuA, outQuA) is
a function �A�() from finite sequences of multi-sets of values to sets of sequences of

multi-sets of values defined by �A�(I)
def
= {outlist(A)

r
: r ∈ Run(Behav(A(I))).

Intuitively, given a sequence I of multi-sets of input values, the rule
Behav(A(I)) computes the set of possible sequences of multi-sets of output val-
ues by iteratively adding each multi-set in I to inQuA, calling A, and recording the
multi-set of output values from outQuA in outlist(A).

We would like to build up UML specifications in a modular way, by combining
a set of UML Machines together with communication links and connecting them to
form a new formal specification. To achieve this, we define the notion of a UML
Machine System (UMS). Our approach allows a rather flexible treatment of the com-
munication since the UMS main loop (Fig. 2) can be modified as necessary. For ex-
ample, our explicit way of modeling the communication links and the messages ex-
changed over them allows modeling exterior influence on the communication within
a system (such as attacks on insecure connections, or quality-of-service aspects of
networks).

Rule Behav(A(I))
loop I through list I

toinQuA(I)
Exec(A)
outlist(A) := outlist(A).outQuA

outQuA := ∅

Fig. 1. Behavior of a UML Machine



40 Jan Jürjens and Pasha Shabalin

Definition 3. A UML Machine System (UMS) A = (NameA,CompA,SchedA,
LinksA,MsgsA) is given by

• a name NameA ∈ UMNames,
• a finite set CompA of UML Machines called components,
• a UML Machine SchedA, the scheduler that may call the components as subrou-

tines,
• a set LinksA of two-element sets l ⊆ CompA, the communication links between

them, and
• a set of messages MsgsA ⊆ MsgNm that the UML Machine System is ready to

receive.

Rule 〈A〉
seq

forall S with S ∈ CompA do

inQu〈S〉 := inQu〈S〉�
{{tail(e) : e ∈ (inQu〈A〉�MsgsA)��

l∈linksS
linkQu〈A〉(l) ∧ head(e) = S }}

inQu〈A〉 := ∅
〈SchedA〉
forall l with l ∈ LinksA do

linkQu〈A〉(l) := {{e ∈ outQu〈S〉 :
S ∈ CompA ∧ l = {head(e), Ai} }}

outQu〈A〉 := outQu〈A〉 �
�

S∈CompA
{{tail(e) :

e ∈ outQuS ∧ head(e) = 〈A〉 }}
forall S with S ∈ CompA do

outQu〈S〉 := ∅
endseq

Fig. 2. Main loop of a UML Machine System

The set MsgNm consists of finite sequences of names n1.n2. . . . .nk where
n1,. . . , nk−2 are names of UMSs, nk−1 is a name of a UML Machine, and nk is the
local name of the message. We define the set Events of events to consist of terms of
the form msg(exp1, . . . , expn) where msg ∈ MsgNm is an n-ary message name
and exp1, . . . , expn ∈ Exp are expressions, the parameters or arguments, of the
event (for a given set of expressions Exp).

We recursively define the behavior of any UMS A as a UML Machine 〈A〉. For

any UML Machine A, we define 〈A〉
def
= A. Given a UMS A, the UML Machine

〈A〉 models the joint execution of the components of A and their communication
by exchanging messages over the links. The execution rule for〈A〉 is given in Fig. 2

(where linksS
def
= {{A,B} ∈ LinksA : A = S} is the set of links connected to S).
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3 Formal Semantics for a Fragment of UML

We sketch our approach to defining a formal semantics for UML models on the ex-
ample of sequence diagrams. Further UML diagrams are formalized similarly [238]
(where also more details about this approach can be found).

In UML, messages can be synchronous (meaning that the sender of the mes-
sage passes the thread of control to the receiver and receives it back together with
the return message) or asynchronous (meaning that the thread of control is split in
two, one each for the sender and the receiver). Accordingly, we partition the set of
message names MsgNm into sets of operations Op, signals Sig, and return mes-
sages Ret. Because of the space restrictions, we only give here a formalization of
the asynchronous communication.

In our model, every object or subsystem O has associated multi-sets inQuO and
outQuO (event queues). We model sending a message msg = op(exp1, . . . , expn) ∈
Events from an object S to an object R as follows:

(1) The object S places the message R.msg into its multi-set outQuS .
(2) The dispatching component distributes the messages from out-queues to the in-

tended in-queues (while removing the message head); in particular, R.msg is
removed from outQuS and msg added to inQuR.

(3) The object R removes msg from its in-queue and processes its content.

This way of modeling communication allows for a very flexible treatment; for exam-
ple, we can modify the UMS main loop (Fig. 2) to take account of knowledge of the
underlying communication layer (such as security or performance issues).

Objects may execute actions. We write Action for the set of actions which are
expressions of the following forms:

Send action: send(sig(a1, . . . , an)) for an n-ary signal sig ∈ Sig and argument
ai ∈ Exp.

Void action: nil.

For any action a, we define the expression ActionRule(a) (where A is the
UML machine in which ActionRule(a) is executed).

ActionRule(send(e)) ≡
(
outQuA := outQuA � {{e }}

)

ActionRule(nil) ≡ skip

The set of Boolean expressions BoolExp is the set of first-order logical formu-
las with equality statements between elements of Exp as atomic formulas.

3.1 Sequence Diagrams

To demonstrate how behavioral diagrams can be included in our framework for defin-
ing a formal semantics for UML, we exemplarily consider a (again simplified and
restricted) fragment of sequence diagrams.

For readability, the prefix obj on the messages sent to an object obj which is
contained in a sequence diagram may be omitted in that diagram (since it is implicit).
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Abstract Syntax of Sequence Diagrams

A sequence diagram D = (Obj(D), Links(D)) is given by:

• a set Obj(D) of pairs (O,C) where O is an object of class C whose interaction
with other objects is described in D and

• a sequence Links(D) consisting of elements of the form l = (source(l), guard(l),
msg(l), target(l)) where
– source(l) ∈ Obj(D) is the source object of the link,
– guard(l) ∈ BoolExp is a Boolean expression (the guard of the link),
– msg(l) ∈ Events is the message of the link, and
– target(l) ∈ Obj(D) is the target object of the link.

Behavioral Semantics

We fix a sequence diagram S modeling the objects in Obj(S)
def
=

⋃
D∈S

Obj(D)
and an object O ∈ Obj(S). Further we assume that the set Var contains elements
argO,l,n for each O ∈ Obj(S) and numbers l and n, representing the nth argument
of the operation that is supposed to be the lth operation received by O according
to the set of sequence diagrams S, and define argsO,l = [argO,l,1, . . . , argO,l,k]
(where the operation is assumed to have k arguments). Then we give the behavior of
O as defined in S as a UML Machine (�S.O�SD, {inQu�S.O�SD}, {outQu�S.O�SD ,

finished�S.O�SD}). The rule of the UML Machine �D.O�SD is given in Fig. 3.

Rule Exec(D .O)
if cncts = [ ] then finishedD.O := true

else

if source(head(cncts)) = O ∧ guard(head(cncts))
then

ActionRuleSD(msg(head(cncts)));
if target(head(cncts)) �= O then

cncts := tail(cncts);
if target(head(cncts)) = O then

choose e with e ∈ inQuO∧
msgnm(msg(head(cncts))) = msgnm(e) do

inQuO := inQuO \ {{e }} ;
argsD,lnum := Args(e);
lnum := lnum + 1;
if msgnm(e) ∈ Op then

sender(msgnm(e)) :=
sndr(e).sender(msgnm(e));

cncts := tail(cncts)

Fig. 3. UML Machine for sequence diagram

Given a sequence l of links and an object O, define l�O to be the subsequence l

of those elements l with source(l) = O or target(l) = O.
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3.2 Reasoning about Model Properties

The UML Machines framework allows formal inspection of the UML model for cer-
tain properties. In case of a security-critical system, these can be for example “data
security” (indicating that a certain data item should not leak out of a system compo-
nent). The desirable security properties can be introduced in the model using UML
extension mechanisms and further the whole model can be checked for consistency;
that is; whether the required properties are met by the design.

To investigate security properties of a system, it is extended with a subsystem
modeling behavior of a potential adversary. The notion of UMS allows its natural
modeling. We can create specific types of adversaries that attack different parts of
the system in a specified way. For example, an attacker of type insider may be able
to intercept the communication links in a company-wide local area network. We
model the behavior of the adversary by defining a class of UML Machines that can
access the communication links of the system in a specified way. To evaluate the
security of the system with respect to the given type of adversary, we consider the
joint execution of the system with any UML Machine in this class.

Security evaluation of specifications is done with respect to a given type A of
adversary. For this, in particular, one has to specify a set Kp

A ⊆ Exp of previous
knowledge of the adversary type A. Also, Ka

A ⊆ Exp contains knowledge that may
arise from accessing components (see below). We define K0

A = Ka
A ∪ Kp

A to be the
initial knowledge of any adversary of type A.

Given a UMS A we define the set intA of (recursively) contained components:

• for a UML Machine A, intA := {A} and
• for a UMS A, intA :=

⋃
B∈CompA

intB.

Similarly, for a UMS A we define the set lksA of (recursively) contained links:

• for a UML Machine A, lksA := ∅ and
• for a UMS A, lksA := LinksA ∪

⋃
B∈CompA

lksB.

To capture the capabilities of a possible attacker, we assume that, given a
UMS A, we have a function threatsAA(x) that takes a component or link x ∈
intA ∪ lksA and a type of adversary A and returns a set of strings threatsAA(x) ⊆
{delete, read, insert, access} under the following conditions:

• for x ∈ intA, we have threatsAA(x) ⊆ {access},
• for x ∈ lksA, we have threatsAA(x) ⊆ {delete, read, insert}, and
• for l ∈ lksA with i ∈ l and threatsAA(i) = {access}, the equation threatsAA(l) =

{delete, read, insert} holds.

The idea is that threatsAA(x) specifies the threat scenario against a component or
link x in the UMS A that is associated with an adversary type A. On the one hand, the
threat scenario determines which data the adversary can obtain by accessing com-
ponents; on the other hand, it determines which actions the adversary is permitted
by the threat scenario to apply to the concerned links. Thus each function threats()
gives rise to the set of accessed data Ka

A mentioned above and a set of permitted
actions permA:
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• Ka
A consists of all expressions appearing in the specification for any i ∈ intA

with access ∈ threatsAA(i).
• permA consists of

– all actions deletel ≡ linkQuA(l) := ∅ for any l ∈ lksA with delete ∈
threatsAA(l) (deletes all elements from linkQuA(l)),

– all actions readl(m) ≡ m := linkQuA(l) for any l ∈ lksA with read ∈
threatsAA(l) and any variable name m (copies the content of linkQuA(l) to
the variable m), and

– all actions insertl(e) ≡ linkQuA(l) := linkQuA(l) � {{e }} for any l ∈ lksA
with insert ∈ threatsAA(l) and any e ∈ K0

A (adds an element e to linkQuA(l)).

Intuitively, permA consists of those actions that an adversary of type A is capable of
doing with respect to the multi-set linkQuA(l) for any link l.

3.3 Using External Verification Tools

One of the goals of this work is to provide tool support for security analysis of
models in UMLsec, the UML-based language for secure-critical system develop-
ment which was introduced in [239]. Verification of complex dynamic properties
of UMLsec models requires application of an external verification tool, for exam-
ple model checker, theorem prover, or Prolog interpreter. Following the semantics
presented above, the relevant model fragment is translated into the language of the
target verification tool. Exemplarily, verification of the 〈〈secrecy 〉〉 property using the
model checker implies translation of three UMLsec diagram types, extracting from
them the following information.

Class Diagrams

These are used to define classes in the model and associations between them. A class
contains a set of attributes (local variables) with optional initial values and a set of
operations. An attribute can be marked by a stereotype. Each operation can have zero
or more parameters. An association has two association ends, each connected to a
class. An association in our semantics intuitively means “knows about”. Operations
defined by a class can be invoked by sending a message to it by any object in the
system (including itself).

Statechart Diagrams

These define dynamic behavior and changes in the internal state of the UML classes
in response to incoming messages. This behavior is inherited by all objects instan-
tiated from the class. Following the UMLsec formal semantics, each statechart dia-
gram is translated into a run-to-completion loop ensuring that a message can only
be dequeued and dispatched after the previous message has been fully completed. In
the case when the new message does not make any transition selection, it is dropped
and the next message from the input queue is consumed. The execution blocks on an
attempt to read from an empty input queue until a new message arrives.
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Deployment Diagrams

These describe the physical layout of the system. Objects in a deployment diagram
represent instances of classes; there can be more than one instance of the same class.
Each object is contained in a component instance, and each component instance is
contained in a node instance. A link represents a physical connection between two
node instances. Physical properties of the link are defined by attaching one of the
UMLsec stereotypes 〈〈LAN 〉〉, 〈〈 Internet 〉〉, or 〈〈Encrypted 〉〉.

Objects in a Deployment diagram are connected by associations which represent
logical dependencies between them. During model translation, logical connections
between classes, defined by associations in the class diagram, are mapped to asso-
ciations and further to links in the deployment diagram. Later adversary capabilities
for every logical association in the class diagram are calculated from these mappings.

4 UML and XML-Based Analysis for Critical Systems
Development

We will now explain how UML, together with an XML-based analysis of UML mod-
els, can be used as a basis for a formally based method for critical systems develop-
ment. We will first analyze our requirements on the proposed method, and demon-
strate how the UML-based solution meets them. To keep the presentation concise
and intelligible, we will restrict ourselves to security-critical systems. However, our
approach is generic, and can be applied to other criticality requirements like safety,
quality-of-service, etc.

An inherent problem of any model-based verification method, including our ap-
proach, is the possibility of an attack exploiting inconsistencies between the model
and the modeled system. On one hand these are human errors in the modeling
process. On the other hand the adversary can attack some system features which
are normally not included in the abstraction. Exemplarily, this can include crypt-
analysis of the underlying algorithms, and statistical analysis of the system physi-
cal characteristics including time, energy consumption, or electromagnetic radiation
monitoring.

The UML-based formal methodology for the development of security-critical
systems should meet the following requirements:

• Given a system model described with UML, it should automatically evaluate it
for security-related vulnerabilities in design.

• The methodology should be available to developers that are not necessarily se-
curity experts, and still allow them to ensure the necessary security properties of
the system under design.

• Security properties are often imprecisely defined or misunderstood. Formulating
security properties of a system can often be a challenge by itself. Therefore we
should enable the user to define easily and unambiguously both security features
and security requirements of the system. The latter step is often considered as
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granted, but for many security properties it can be very difficult and normally
requires the developer to have special qualifications in cryptography.

• Costs of correcting flaws in a software system grow dramatically in the process
of development; therefore we would like to consider security from early design
phases.

• Consider security on different levels of abstraction, and in system context. Secu-
rity of a complex distributed computer system can be violated on different levels.
Even worse, security properties are generally not preserved by the composition
[240] and therefore blindly combining even proven security mechanisms may
result in a faulty system. The method should detect these kinds of errors.

• Make use of the powerful pattern concept and encapsulate established rules of
prudent security engineering.

• For certain security-critical software products, such as firewalls, the acceptance
procedure is comparable to the development itself in laboriousness. Thus we
want to make certification cost-effective.

Now we will look closer at some of the requirements listed. It is obvious that to-
day any software development methodology which aims for broad acceptance needs
to provide the end user with software tools supporting it. We are facing two chal-
lenges in this regard.

First, we need a uniform and standardized way of acquiring and processing UML
models. Until recently there were no standards on storing UML models, and different
UML editing tools were producing files in proprietary format. The development and
spreading of XML as a universal data representation language motivated the devel-
opment of the XML Metadata Interchange (XMI) [313] language for storing UML
models in a file.

For developing critical systems using UML and XML-based analysis, one needs
a precise semantics of the used notation. The UML is relatively precisely defined, but
its semantics is given partially in prose, leaving room for ambiguities [431]. We have
refined the semantics by giving mathematically precise meaning to UML constructs,
as shown in the previous chapter.

5 Tools for Advanced XML-Based Processing of UML Models

Using the UML notation has two important aspects:

• Standardized notation helps to capture, store, and exchange knowledge about the
system under design.

• Semantics, although semi-formal, assures that different developers understood
the common meaning of UML diagrams.

Initially, different UML tools implemented proprietary UML storage formats
which made exchange and reuse of the models impossible. Having chosen a UML
tool, the developer was tied to using it through the whole project. Applying emerging
technologies the UML modeling on an industrial level was virtually impossible. To
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suggest any custom UML processing, one would have to develop a complete UML
editor and persuade the auditorium to use it.

Development of the XML as a universal data storage format changed this situa-
tion dramatically. In the year 2000 The Object Management Group (OMG) [322] is-
sued the first specification for the XML Metadata Interchange (XMI) language [313]
which – among other applications – became a standard for serializing UML models
in a file.

The XMI language is compliant with MOF (Meta-Object Facility [312]), which
is a framework for specifying meta-information (also called metamodels). Initially
it was developed to define CORBA-based services for managing meta-information.
Currently its applications include definition of modeling languages such as UML and
CWM (Common Warehouse Model). The framework operates on a four-level data
abstraction model, shown in Fig. 4.

M3 Meta-Metamodel
MetaClass, MetaAssociation
- MOF Model

M2 Metamodel
Class, Attribute, Dependency
- UML (as a language), CWM

M1 Model
Person, City, Book
- UML Model

M0 Data
Bob Marley, Bonn
- Running program

Fig. 4. MOF framework

We consider the abstraction levels from bottom up. The lowest level M0 deals
with the data instances, for example Mr. Smith, 35 years old, lives in New York. The
level M1 describes data models; in software development this corresponds to the
UML model of the application. An example for this layer is a Person with attributes
Name, Age, Address. The next abstraction level M2 is the modeling language itself.
There exist different modeling languages for different application domains, and the
last abstraction level M3 is the common environment for defining these modeling
languages, standardized by the MOF. It operates with three elements:

MOF Object defines object types for the target model. It includes a name; a set of
attributes, both predefined and custom; a set of operations; a set of association
references; a set of supertypes it inherits, and some other information. The MOF
object is a container for its component features; that is, any attributes, opera-
tions, and association references. It may also contain MOF definitions of data
types and exceptions.

MOF Association defines a link between two MOF objects. The MOF links are al-
ways binary and directed. A link is a container for two association ends, each
representing one object the link is connected to.

MOF Package groups related MOF elements for reuse and modularization. It is de-
fined by a name; a list of imports which defines a set of other MOF packages
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whose components may be reused by components defined within the package;
a list of supertypes which defines a set of other MOF packages whose compo-
nents form a part of the package; and a set of contained elements including other
objects, associations, and packages.

The MOF also defines the following secondary elements:

Data Types can be used to define constructed and reference data types.
Constants define compile-time constant expressions.
Exceptions can be raised by object operations.
Constraints can be attached to other MOF elements. Constraint semantics and veri-

fication are not part of the MOF specification, and therefore they can be defined
with any language.

The MOF is related to two other standards:

XML Metadata Interchange (XMI) is a mapping from MOF to XML. It can be used
to automatically produce an XML interchange format for any language described
with MOF. For example, to produce a standardized UML interchange format, we
need to define the UML language using MOF, and use the XMI mapping rules
to derive DTDs and XML Schemas for UML serialization. MOF itself is defined
using MOF itself, and therefore XMI can be applied not only for metamodel
instances, but for metamodels themselves (as they are also instances of a meta-
model, which is MOF).

Java Metadata Interface (JMI) standard defines MOF-to-Java mapping
(similar to the MOF-to-XML mapping provided by XMI). It is used to derive
Java interfaces tailored for accessing instances of a particular metamodel. As
MOF itself is MOF compliant, it can be used to access metamodels too. The
standard also defines a set of reflective interfaces that can be used similar to the
metamodel-specific API without prior knowledge of the metamodel.

After the standards were introduced, major producers of UML editors eventually
picked it up, and currently support model interchange in the XMI format. Together
with the wide support for the XML in industry, including a broad range of libraries,
editors, and accompanying technologies, this enables development of the lightweight
UML processing tools, tailored to carry one particular task.

The whole story is applicable to the formalized critical system development with
UML. To facilitate acceptance of the formalized UML-based software development,
automated processing of UML models was greatly required. Prototype tools support-
ing this functionality have been developed at the TU München; some results of these
projects are presented below. Especially we hope that the publicly available Web-
based interface will provide a simple and accessible entry into the methodology.

5.1 XML-Based Data Binding with MDR

Technically the central question was how to work with UML/XMI files. There exist
three possible approaches:
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• XML parsing and transformation languages coupled with the XML standard
(XPath, XSLT).

• Any high-level language with appropriate libraries (Java, C++, Perl).
• Data binding.

The first two methods, although more flexible, require more development effort.
However, for UML processing we are concerned about the data contained in docu-
ments rather than about the document itself and its structure. For this purpose, data
binding offers a much simpler approach to working with XML data.

There exist several libraries supporting data binding for XML. It was important
to use one with an appropriate data abstraction level. For example, the widely used
Castor library [57] would leave the developer with a very abstract representation of
the UML model, on the level of MOF constructs. However, there exist data-binding
libraries which provide a representation of a UML XMI file on the abstraction level
of a UML model. This allows the developer to operate directly with UML concepts
(such as classes, statecharts, stereotypes, etc.). We use the MDR (MetaData Repos-
itory) library which is part of the Netbeans project [299], also used by the freely
available UML modeling tool Poseidon 1.6 Community Edition [146]. Another such
library is the Novosoft NSUML project [302].

The MDR library implements an MOF repository with support for XMI and JMI
standards. Figure 5 illustrates how the repository is used for working with UML
models.

Fig. 5. Using the MDR library

The XMI description of the modeling language is used to customize the MDR for
working with a particular model type, UML in this case (step 1). The XMI descrip-
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tion of UML 1.5 is published by the Object Management Group (OMG) [322]. A
storage customized for the given model type is created (step 2). Additionally, based
on the XMI specification of the modeling language, the MDR library creates the
JMI (Java Metadata Interface) implementation for accessing the model (step 3). This
allows the application to manipulate the model directly on the conceptual level of
UML. The UML model is loaded into the repository (step 4). Now it can be accessed
through the supplied JMIs from a Java application. The model can be read, modified,
and later saved as an XMI file again.

Because of the additional abstraction level implemented by the MDR library,
using it in the UML suite should facilitate upgrading to upcoming UML versions,
and promises the highest available standard compatibility.

5.2 XML-Based UML Tools Suite

To facilitate the application of our approach in industry, automated tools for the
analysis of UML models using the suggested semantics are required. We describe
a framework that incorporates several such verifiers currently beeing developed at
the TU München.

Functionality

We can group all the UML model features, which can be verified, into two major
categories:

• Static features. Checkers for static features (for example, a type checking like
enforcement of security levels in class and deployment diagrams) can be imple-
mented directly.

• Dynamic features. Verification of these properties requires interfacing with a
model checker. The relevant elements of the UML specification are translated
into the model-checker input language; the required model properties are pre-
sented by Temporal Logic formulas.

We present the architecture of the UML tools suite developed at the TU München,
providing verification tools for these features. Its architecture and basic functionality
are illustrated in Fig. 6. The implemented functionality is publicly available through
a Web-based interface (see http://www4.in.tum.de/ csduml/interface/interface.html).

The developer creates a model and stores it in the UML 1.5/XMI 1.2 file for-
mat. The file is imported by the UML into the internal MDR. Other components of
the UML suite access the model through the JMI interfaces, generated by the MDR
library. The Static Checker parses the model, verifies its static features, and deliv-
ers the results to the Error Analyzer. The Dynamic Checker translates the relevant
fragments of the UML model into the input language of the relevant analysis engine
(currently, the Promela language for the Spin model checker and the TPTP format
for the automated theorem prover Setheo). The analysis engine is spawned by the
UML suite as an external process; its results (and a counterexample in case a prob-
lem was found) are delivered back to the Error Analyzer. The Error Analyzer uses
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Fig. 6. UML tools suite

the information received from both Static Checker and Dynamic Checker to produce
a Text Report for the developer describing the problems found, and a Modified UML
Model, where the errors found are visualized and/or corrected.

The idea behind the tools suite is to provide a common programming framework
for the developers of different verification modules (tools). Thus a tool developer
should concentrate on the verification logic and not on the handling of input/out-
put. Different tools, implementing verification logic modules (Static Checkers or
Dynamic Checkers in Fig. 6), can be independently developed and integrated. Cur-
rently there exist Static Checkers for most static UMLsec properties, and Dynamic
Checkers for some dynamic properties.

The tool implementation follows the following simple concepts:

• The tool is given a default UML model to operate on. It may load further models
if necessary.

• The tool exposes a set of commands which it can execute.
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• Every single command is not interactive. It receives parameters, executes, and
delivers feedback.

• The tool can have its internal state which is preserved between commands.

Architecture

By its design the UML framework provides a common programming environment
for the developers of different verification modules (tools). Thus a tool developer
concentrates on the verification logic and not on the auxiliary tasks like handling in-
put/output. An additional requirement is the independent implementation of different
pieces of UML model verification logic by different developers.

On any Java-enabled platform, the framework can run in one of three modes:

• as a console application, either interactive or in batch mode;
• as a Java Servlet, exposing its functionality over the Internet;
• as a GUI application with higher interactivity and presentation capabilities.

Accordingly, each tool that is integrated in the UML framework must implement
a common interface IToolBase plus the three media-dependent interfaces IToolCon-
sole, IToolWeb, and IToolGui as illustrated in Fig. 7.

Framework

Tool

IToolConsole

IToolWeb

IToolGui

ToolBase

FrameworkConsole
FrameworkWeb
FrameworkGui

IToolBase

Fig. 7. Tool interfaces

However, the requirement to implement all three media-dependent interfaces for
a tool would mean a serious overhead for the tool developer. To assist the developer
in this regard, the framework provides default implementations for the IToolWeb
and IToolGui interfaces, as illustrated in Fig. 8. These default wrappers render the
plain text output, generated by the tool through the IToolConsole interface, into the
HTML page or scrolling text window respectively. Thus each tool plugged into the
framework must implement at least the IToolBase and IToolConsole interfaces. If
the tool developers want to exploit all capabilities of the Web or GUI media, they
have to implement the IToolWeb and/or IToolGui interfaces, which provide more
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MyUmlTool
IToolConsole

«framework»
DefaultGuiWrapper

«framework»
DefaultWebWrapper

IToolGui

IToolWeb

IToolBase

Fig. 8. Default interface wrappers

control over the tool input and output. In the GUI mode the developer is then re-
quested to provide an instance of the JPane-derived class which hosts the complete
UI of the tool and has the ability to customize the menu and toolbar of the framework.
In the Web mode the developer can fully control the rendered HTML document.

The UML framework uses the IToolBase interface to retrieve general informa-
tion about the tool, and one of the three tool media-specific interfaces to call com-
mands provided by the tool and receive the output. The output is further rendered by
the framework on the current media.

Each tool exposes a set of commands which can be executed through the func-
tions GetConsoleCommands, GetWebCommands, and GetGuiCommands of
the corresponding interface. Thus the tool can provide different functionality on dif-
ferent media, adapting to its specifics.

The tool can execute several commands sequentially, preserving its internal state
and the changes to the UMLsec model between command calls. The set of available
commands for each tool may vary depending on the execution history and current
state. This allows use of the UML framework for complex and interactive operations
on the UML model.

To achieve the media-independent operation of the tools their parameter input,
as well as their output, is handled by the framework and not by the tools them-
selves. Each single command during its execution defines the set of required input
parameters, and receives them from the framework. On behalf of the tool, the UML
framework collects the parameters from the user using the current input/output media
(console, Web, or GUI). Currently supported parameter types are Integer, Double,
String, and File. Further types can be easily integrated into the framework as neces-
sary.
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6 Related Work

There has been a considerable amount of work toward a formal semantics for various
parts of UML. A complete overview has to be omitted, but [133] discusses some fun-
damental issues concerning a formal foundation for UML. [358] gives an approach
using algebraic specification; [48] uses a framework based on stream-processing
functions; and [43] uses ASMs for UML statecharts which was a starting point for
the current work.

There are several existing tools for automatic verification of the UML models.
The HUGO Project [374] checks behavior described by a UML collaboration dia-
gram against a transitional system comprising several communicating objects. The
vUML Tool [276] analyzes the behavior of a set of interacting objects, defined in
a similar way. A related approach to ours is also given by the CASE tool AUTO-
FOCUS [212] which uses a UML-like notation. However, neither tool can be directly
extended for our purpose. First, our approach allows formalization and verification
of different UML diagrams in combination. Second, our implementation explicitly
models data types, which is necessary for handling, for example, encryption primi-
tives.

Work on model-based development of systems with other non-functional require-
ments besides security includes pp. 289, 305, 329, and 363 in this book on embedded
systems. Other work on tool support for model-based development can be found for
example on pp. 91 and 139 of this book.

7 Conclusion

The development and spreading of the UML within the last few years, especially its
standardization and introduction of supporting technologies, is changing its role in
software development from a notational aid to a powerful framework with support
for the automation of many development tasks.

We presented work for formal critical systems development using the UML. We
provided a formal semantics for a fragment of the UML using UML Machines, which
puts diagrams into context. The semantics is particularly useful to analyze the inter-
action between a system and its environment and to analyze UML specifications in a
modular way. In particular, we explained how to use the semantics to analyze UML
specifications for criticality requirements, by including an adversary model.

We have demonstrated a framework for automated processing of UML models,
which facilitates technology transfer to industry. This framework has been used to
connect various analysis engines (the model checker Spin, the automated theorem
provers Setheo and SPASS, and a Prolog verification engine) to support the auto-
mated analysis of criticality requirements (in particular, behavioral properties).

The proposed method of XML-based analysis of UML models has been success-
fully tried out on several industrial projects.

We believe that the suggested approach to critical system development using
UML and XML-based processing of UML models will find widespread acceptance
in the modern software development industry for the following reasons:
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• It is based on UML, which is the de facto standard in software development, and
which facilitates acceptance in industrial software development teams.

• The application of the methodology requires no special training in security (in
the case of UMLsec) or the other criticality domains.

• The suggested formal semantics for a simplified fragment of the UML lays a
foundation for advanced XML-based tool support for the methodology, making
automatic verification of the criticality features possible.

The tools presented in this chapter have been successfully used in industrial
projects with partners including German Telecom, BMW, Allianz insurance, and oth-
ers.

We plan to continue work on the project. Some important aspects for the future
development are listed below:

• When targeting external verification tools, complexity of the produced model is
an issue for our method. Several approaches can help to address this problem.
Highly non-deterministic adversary behavior, which is mostly responsible for
the complexity issue, can be significantly restricted by using simple rules for cut-
ting out uninteresting scenarios. Separate verification of different scenarios can
be possible. Additional, possibly automatic model abstraction while preserving
desired requirements is an interesting approach in this regard.

• Improving feedback to the user is an important step toward broad application
of the methodology in industry. Currently we support rudimentary annotation
of UML models with labels indicating potential problems. The feedback can be
significantly extended, for example an error trace produced by a model checker
could be translated into a UMLsec sequence diagram, which would illustrate for
the developer the sequence of actions which led to the problem. The upcoming
UML 2.0 standard is particularly interesting in this regard as it supports diagram
interchange.
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Summary. Agent technology is widely perceived to be a viable solution for large-scale in-
dustrial and commercial applications in dynamic environments such as the Internet. However,
the lack of rigour and language support in the analysis, specification, design and implementa-
tion of multi-agent systems has hampered the wide adoption of agent technology. This chapter
proposes a model-driven approach to the development of multi-agent systems. It combines
graphic modelling with formal specification through automated tools. The chapter reports an
agent-oriented modelling language CAMLE and the automated tools in its modelling envi-
ronment. Two aspects of particular importance in the model-driven development methodology
are addressed in this chapter. The first is the definition and implementation of consistency
constraints on graphic models. The second is the automated transformation of graphic models
into formal specifications.

1 Introduction

Agent technology has long been predicted to be the next mainstream computing para-
digm; see, for example, [230, 371, 340]. It is widely perceived to be a viable solution
for large-scale industrial and commercial applications in dynamic environments such
as the Internet [234]. One of the key factors that contributed to the progress in soft-
ware engineering over the past two decades is the development of language concepts
and facilities that directly support increasingly powerful and natural high-level ab-
stractions with which complex systems are modelled, analysed and developed. From
a software engineering point of view, one of the most appealing features of agent
technology is its natural way to modularize a complex system in terms of multiple,
interacting and autonomous components that have particular objectives to achieve
[233]. Such modularity achievable by multi-agent systems (MASs) is much more
powerful and natural than any kind of modularity that can be achieved by existing
language facilities such as type, module and class.
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However, the research on agent-based systems has been mainly an AI endeavour
so far. The majority of extant agent applications are developed in an ad hoc fashion
without proper analysis and specification of requirements, and without systematic
verification and validation of the properties of the implemented systems. We believe
that there are two major factors that hamper the wide adoption of agent technology in
software development. First, being autonomous, proactive and adaptive, agent-based
systems can be very complicated. They may demonstrate emergent behaviours which
sometimes are neither designed by the developers nor expected by the users. The new
features of agent-based systems demand new methods for the specification of agent
behaviours and for the verification and validation of their properties to enable soft-
ware engineers to develop reliable and trustworthy agent-based systems. It has been
recognized that the lack of rigour is one of the major factors hampering the wide-
scale adoption of agent technology [47]. Second, extant MAS are mostly developed
without a proper language facility that directly supports the effective and efficient
utilization of the modularity and abstraction underlying the concept of agents. Due
to the lack of language support, the advantages and merits of agent technology are
inevitably overwhelmed by the inefficiency of the implementations in incompatible
languages, and the high cost and poor productivity due to the unnecessary complexity
in design, coding, debugging, and testing at a lower level of abstraction etc.

In this chapter, we propose a model-driven approach to the development of
agent-based systems. It combines graphic modelling of MAS with implementation-
independent formal specifications in order to provide the rigour in the analysis, spec-
ification and design of MAS. The central concept of the approach is caste, which
is a language facility introduced as a natural evolution of the notion of data type in
procedural programming and class in object-oriented paradigm. It is the classifier
of agents. It serves as the template of agents and the organizational unit of MASs.
This language facility is intended to bridge the gap between the abstract concepts
of agent and their concrete representations in computer software so that MAS ap-
plications can be developed effectively and efficiently. In this chapter, we present an
informal introduction to the modelling language CAMLE, which stands for Caste-
centric Agent-oriented Modelling Language and Environment [389]. We also report
an automated modelling environment that supports the users to construct MAS mod-
els at the requirements analysis and specification stage in CAMLE graphical notation
with multiple views and at different abstraction levels. We will focus on two aspects
of particular importance in the tool support to model-driven software development.
They are the consistency problem of graphic models and the automation problem
of model-based development. Diagrammatic models in CAMLE serve as a repre-
sentation of users’ requirements and are used as the bases for further design and
implementation of MAS. It is therefore of vital importance to ensure the model’s
consistency [390]. A set of consistency constraints is defined on CAMLE models
and an automatic consistency checker is designed and implemented to help the de-
tection of inconsistency according to the constraints. As in many existing modern
modelling languages that employ the so-called multiple view principle, the infor-
mation that specifies one caste of agents is scattered over various diagrams. It is
therefore desirable to specify each caste of agents in one ‘module’ that contains all
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necessary information for its further design and implementation without unnecessary
knowledge of other parts of the system. This is achievable through an automated tool
that transforms graphic models into formal specifications in SLABS (a Specification
Language for Agent-Based Systems) [468, 470], which describes an MASwith a set
of specifications of the castes that the system contains.

The remainder of the chapter is organised as follows. Section 2 presents the meta-
model of MAS, which is independent of the implementation platforms and applicable
to all types of agent theories and techniques. Section 3 is an informal introduction
to the modelling language CAMLE. Section 4 defines the consistency constraints
on models in CAMLE. Section 5 describes the algorithms and rules that transform
graphic models in CAMLE to formal specifications in SLABS. Section 6 describes
the architecture and main functions of the automated modelling environment and
reports the case studies with the modelling language and environment. Section 7
concludes the chapter with a discussion of further research.

2 Meta-model of Multi-agent Systems

Because the concepts of agents and MAS are controversial, it is worth saying a few
words to clarify what we mean by agent and MAS and how such systems work. Gen-
erally speaking, a consistent definition of the basic concepts, structures and mech-
anisms underlying a specific type of system forms a conceptual model (sometimes
also called meta-model) of these systems. A conceptual model of MAS, therefore,
must answer a set of fundamental questions about agents and MAS. For example,
what is the structure of an agent? How do agents perform their activities? What con-
stitute an MAS? How do agents in an MAS communicate with each other? How are
agents in an MAS organized? And so on.

Our conceptual model can be characterized by a set of pseudo-equations. Each
pseudo-equation answers such a question and thus defines a key feature of MAS. A
formal definition of the model can be found in [468, 470].

Pseudo-equation (1) states that agents are defined as real-time active computa-
tional entities that encapsulate data, operations and behaviours, and are situated in
their designated environments:

Agent = 〈Data,Operations,Behaviour〉Environment (1)

Here, data represent an agent’s state. Operations are the actions that the agent can
take. Behaviour is described by a set of rules that determine how the agent behaves,
including when and how to take actions and change state in the context of its des-
ignated environment. By encapsulation, we mean that an agent’s state can only be
changed by the agent itself, and the agent can decide ‘when to go’ and ‘whether to
say no’ according to an explicitly specified set of behaviour rules. Figure 1 illustrates
the control structure of the agent’s behaviour.

There are two fundamental differences between objects and agents in our con-
ceptual model. First, objects do not contain any explicitly programmed behaviour
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Begin
 Initialise state; 
 Loop 
  Perceive the visible actions and states of the agents in the 

environment;
  Take actions and change state according to the situation in the 

environment and the agent’s internal state;  
 end of loop; 

end

Fig. 1. The control structure of an agent’s behaviour

rule. Second, objects are open to all computation entities to call their public methods
without any distinction of them. However, as argued in [468], objects can be consid-
ered as agents in a degenerate form. In particular, object is a special case of agent in
the sense that it has a fixed rule of behaviour, i.e. ‘executes the corresponding method
when receives a message’. Consequently, in our conceptual model, an MAS consists
of agents and nothing but agents, as stated in pseudo-equation (2):

MAS = {Agentn}, n ∈ Integer (2)

Notice that an agent’s state variables and actions are divided into two kinds: visible
ones and invisible (or internal) ones. An agent taking a visible action can be under-
stood as generating an event that can be perceived by other agents in the system,
while an agent taking an internal action means it generates an event that can only be
perceived by its components, which are also agents. Similarly, the value of a visible
state variable can be obtained by other agents, while the value of an internal state
can only be obtained by its components. Notice that our use of the term ‘visibility’
is different from the traditional concept of scope.

The concept of visibility of an agent’s actions and state variables forms the basic
communication mechanism in our conceptual model. Agents communicate with each
other by taking visible actions and changing visible state variables, and by observing
other agents’ visible actions and visible states, as shown in pseudo-equation (3):

Communication(A → B) = A.Action&B.Observation (3)

However, an agent’s visible action is not necessarily observed by all agents in the
system. It is only observed by those interested in its behaviour and considering it as
a part of their environments. In other words, the environment of an agent in an MAS
at time t is a subset of the agents in the system. As illustrated in pseudo-equation
(4), from a given agent’s point of view, only those in its environment are visible.
In particular, from agent A’s point of view, agent B is visible means that agent A
can perceive the visible actions taken by agent B and obtain the value of agent B’s
visible part of state:

Environmentt(Agent,MAS) ⊆ MAS − {Agent} (4)

To enable our model to deal with open and dynamic environments, we introduced
the concept of ‘designated environment’, i.e. the environment of an agent is specified
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when the agent is designed, but the specification allows the environment to vary
within a certain range. Therefore, the set of agents in the environment of an agent
depends on time, hence, the subscription t in pseudo-equation (4). The language
facility that enables us to achieve the variation of environment is the concept of
caste.

In our conceptual model, the classifier of agents is called caste. Agents are clas-
sified into various castes in a similar way as to that data are classified into types, and
objects are classified into classes. However, different from the notion of class in ob-
ject orientation, caste allows dynamic classification. That is, an agent can change its
caste membership (called casteship in the sequel) at run-time. It also allows multiple
classifications, i.e. an agent can belong to more than one caste at the same time. As
all classifiers, inheritance relations can also be specified between castes. As a conse-
quence of multiple classifications, a caste can inherit more than one caste. Caste is
the basic organizational unit in the design and implementation of MAS. As a mod-
ularity language facility, a caste serves as a template that describes the structure and
behaviour properties of agents. Pseudo-equation (5) states that a caste at time t is a
set of agents that have the same structural and behavioural characteristics:

Castet = {agents|structure & behaviour properties} (5)

The weakness of the static object–class relationship in current mainstream object-
oriented programming has been widely recognized. Proposals have been advanced,
for example, to allow objects’ dynamic reclassification [92]. In [471], we suggested
that an agent’s ability to dynamically change its roles is represented by dynamic
casteship. In our model, dynamic casteship is an integral part of agents’ behaviour
capability. Agents can have behaviour rules that allow them to change their castes
at run-time autonomously. To change its casteship, an agent takes an action to join
a caste or retreat from a caste at run-time. Therefore, which agents are in a caste
depends on time even if agents can be persistent, hence the subscript of t in pseudo-
equation (5). We believe that this feature allows users to model the real world by
MAS naturally and to maximize the flexibility and power of agent technology.

Moreover, dynamic caste membership enables us to describe agents’ designated
environments in a flexible and effective way. The environment description of an agent
(or a caste) defines what kinds of agents are visible. With the concept of caste, we can
describe an environment, for example, as the set of agents in a number of particular
castes. An environment so described is neither closed, nor fixed – nor totally open.
Since agents can change their casteships dynamically, an agent’s environment may
change dynamically as well. For example, an agent’s environment changes when it
joins a caste and hence the agents in the caste’s environment become visible. The en-
vironment also changes when other agents join the caste in the agent’s environment.

It is worth noting that the conceptual model defined above is independent of any
implementation platform and applicable to all types of agent theories and techniques.
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3 The CAMLE Modelling Language

In this section, we give an informal introduction to the modelling language CAMLE
and illustrate its uses by a simple example.

3.1 The Overall Structure of Models

CAMLE employs the multi-view principle to model complicated systems. There are
three types of models in CAMLE: caste models, collaboration models and behaviour
models. Each model may consist of one or more diagrams. A caste model specifies
the castes of agents in the system and the relationships between them, such as the
inheritance and whole–part relations. A collaboration model specifies how the agents
interact with each other. A behaviour model specifies how an agent decides its actions
and state changes.

A caste is called a compound caste if its agents are composed from a number of
other agents; otherwise, it is called atomic. An MAS can, therefore, be considered
as a compound agent. For example, as shown in Fig. 2(a), the system is directly
composed of castes A and B. Each of them can be further decomposed into smaller
components N1 and N2, and M1 and M2, respectively. To each compound caste,
such as the system, A and B in Fig. 2, a collaboration model and a behaviour model
are associated. Atomic castes only have no collaboration models because they have
no components, thus no internal collaboration.

The overall structure of a system’s collaboration models and behaviour models
can be viewed as a hierarchy, which is isomorphic to the whole–part relations be-
tween castes described in the caste model; see e.g. Fig. 2(b).

The following subsections describe each model and discuss their uses in agent-
oriented software development.

3.2 Caste Model

We view an information system as an organization that consists of a collection of
agents that stand in certain relationships to one another by being a member of certain
groups and playing certain roles, i.e. in certain castes. They interact with each other
by observing their environments and taking visible actions as responses. The behav-
iour of an individual agent in a system is determined by the ‘roles’ it is playing. An
individual agent can change its role in the system. However, the set of roles and the
assignments of responsibilities and tasks to roles are usually quite stable [326]. Such
an organizational structure of information systems is captured in our caste model.

Figure 3 shows the notation and an example of caste diagrams. A caste diagram
identifies the castes in a system and indicates the relationships between them. In
CAMLE, there are three types of relationships on castes represented in caste models.
They are inheritance, aggregation and migration relations.

The inheritance relationship between castes defines sub-groups of the agents that
have special responsibilities and hence additional capabilities and behaviours. For
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(a) Example of caste model with whole-part relations( ) p

(b) Collaboration models and behaviour models

Fig. 2. Overall structure of CAMLE models

example, in Fig. 3, the members of a university are classified into three castes: stu-
dents, faculties and secretaries. Students are further classified into three sub-castes:
undergraduates, postgraduates and PhD students.

Migration relations specify how agents change their casteships. There are two
kinds of migration relationships: migrate and participate. A migrate relation from
caste A to B means that an agent of caste A can retreat from caste A and join caste
B. A participate relation from caste A to B means that an agent of caste A can join
caste B while retaining its casteship of A. For example, in Fig. 3, an undergraduate
student may become a postgraduate after graduation. A postgraduate student may
become a PhD student after graduation or become a faculty member. Each student
becomes a member of the alumni of the university after leaving the university. A
faculty member can become a part-time PhD student while remaining employed as
a faculty member. From this model, we can infer that an individual can be a student
and a faculty member at the same time if he/she is a PhD student.

An aggregate relation specifies a whole–part relationship between agents. An
agent may contain a number of components that are also agents. The former is called
compound agent of the latter. In such a case, there exists a whole–part relationship
between the compound and the component agents, which is represented through an
aggregate relation between castes. We identify three types of whole–part relation-
ships between agents according to the ways a component agent is bound to the com-
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Fig. 3. Caste diagram: notations and example

pound agent and the ways a compound agent controls its components. The strongest
binding between a compound agent and its components is composition in which the
compound agent is responsible for the creation and destruction of its components.
If the compound agent no longer exists, the components will not exist. The weakest
binding is aggregation, in which the compound and the component are independent,
so that the component agent will not be affected for both its existence and casteships
when the compound agent is destroyed. The third whole–part relation is called con-
gregation. It means that if the compound agent is destroyed, the component agents
will still exist, but they will lose the casteship of the component caste. For example,
as shown in Fig. 3, a university consists of a number of individuals as its mem-
bers. If the university is destroyed, the individuals should still exist. However, they
will lose the membership as the university member. Therefore, the whole–part rela-
tionship between University and University Member is a congregation relation. This
relationship is different from the relationship between a university and its depart-
ments. Departments are components of a university. If a university is destroyed, its
departments will no longer exist. The whole–part relationship between University
and Department is therefore a composition relation. The composition and aggrega-
tion relation is similar to the composition and aggregation in UML, respectively.
However, congregation is a novel concept in modelling languages. It was introduced
by CAMLE. There is no similar counterpart in object-oriented modelling languages,
such as UML. It has not been recognized in the research on object-oriented modelling
of whole–part relations; cf. [28]. We believe that it is important for agent-oriented
modelling because of agents’ basic features, namely dynamic casteship.

3.3 Collaboration Model

While caste model defines the static architecture of MAS, collaboration model de-
fines a dynamic aspect of the MAS organization by capturing the collaboration de-
pendencies and relationships between the agents.
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Agents in an MAS collaborate with each other through communication, which
is essential to fulfil the system’s functionality. Such interactions between agents
are captured and represented in a collaboration model. In CAMLE, a collaboration
model is associated to each compound caste and describes the interactions between
the component agents of the compound caste through a set of collaboration diagrams.
Figure 4 gives the notations of collaboration diagrams.

AgentName: Caste Agent node: CasteName Caste node:

Communication Link: 
Actions

N1 N2

Fig. 4. Notation of collaboration diagram

There are two types of nodes in a collaboration diagram. An agent node repre-
sents a specific agent. A caste node represents any agent in a caste. An arrow from
node A to node B represents that the visible behaviour of agent A is observed by
agent B. Therefore, agent A influences agent B. When agent B is particularly inter-
ested in certain activities of agent A, the activities can also be annotated to the arrow
from A to B.

Although this model looks similar to the collaboration diagrams in UML, there
are significant differences in the semantics. In the OO paradigm, what is annotated
on the arrow from A to B is a method of B. It represents a method call from object
A to object B, and consequently, object B must execute the method. In contrast,
in CAMLE the action annotated on an arrow from A to B is a visible action of A.
Moreover, agent B does not necessarily respond to agent A’s action. The distinction
indicates the shift of modelling focus from controls represented by the method calls
in the OO paradigm to collaborations represented by signalling and observation of
visible actions. It fits well with the autonomous nature of agents.

3.3.1 Scenarios of Collaboration

One of the complications in the development of collaboration models is to deal with
agents’ various behaviours in different scenarios. They may take different actions,
pass around different sequences of messages and even communicate with different
agents. Therefore, it is better to describe different scenarios separately. The collabo-
ration model supports the separation of scenarios by including a set of collaboration
diagrams. Each diagram represents one scenario. In such a scenario-specific collab-
oration diagram, actions annotated on arrows can be numbered by their temporal
sequence. Figure 5 gives an example of a scenario-specific collaboration diagram. It
describes the collaborations of an undergraduate student with his/her personal tutor,
the faculty members who give lectures and the PhD students who are practical class
tutors.



66 Hong Zhu and Lijun Shan

Fig. 5. An example of a scenario-specific collaboration diagram

In addition to scenario-specific collaboration diagrams, a general collaboration
diagram is also associated to each compound caste to give an overall picture of the
communications between all the component agents by describing all visible actions
that the component agents may take and all possible observers of the actions. Fig. 6
describes the communications within a department between various agents.

3.3.2 Refinement of Collaboration Models

The modelling language supports modelling complex systems at various levels of
abstraction. Models of coarse granularity at a high level of abstraction can be refined
into more detailed fine granularity models. At the top level, a system can be viewed
as an agent that interacts with users and/or other systems in its external environ-
ment. This system can be decomposed into a number of subsystems interacting with
each other. A subsystem can also be viewed as an agent and further decomposed.
As analysis deepens, a hierarchical structure of the system emerges. In this way,
the compound agent has its functionality decomposed through the decomposition
of its structure. Such a refinement can be carried on until the problem is specified
adequately in detail. Thus, a collaboration model at system level that specifies the
boundaries of the application can be eventually refined into a hierarchy of collabo-
ration models at various abstraction levels. Of course, the hierarchical structure of
collaboration diagrams can also be used for bottom-up design and composition of
existing components to form a system.

Figure 7 gives an example of a general collaboration diagram that refines the
caste Dept Office. In this diagram, the agents in the castes of Student and Faculty as
well as a specific agent called Dept Head in the caste of Faculty form the environment
of the caste Dept Office. Therefore, they are visible to the component agents of the
caste.

3.4 Behaviour Model

While caste and collaboration models describe MAS at the macro-level from the
perspective of an external observer, the behaviour model adopts the internal or first-
person view of each agent. It describes an agent’s dynamic behaviour in terms of how
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Fig. 6. An example of a general collaboration diagram

Fig. 7. An example of a general collaboration diagram that refines a caste

it acts in certain scenarios of the environment at the micro-level. A behaviour model
consists of two kinds of diagrams: scenario diagrams and behaviour diagrams.

3.4.1 Scenario Diagrams

We believe that each agent’s perception of its environment should be explicitly spec-
ified when modelling its behaviour. From an agent’s point of view, the situation of
its environment is characterized by what is observable by the agent. In other words,
a scenario is defined by the sequences of visible actions taken by the agent in its
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environment. Scenario diagrams identify and describe the typical situations that the
agent must respond to. In Fig. 8, part (a) shows the layout of scenario diagrams and
part (b) shows the layout of swim lanes.

Swimmer(s)

Action 1 

Action 2 

Action K 

(b) The layout of swim lanes 

Scenario Name 

Swim 

Lane 1 

Swim 

Lane N
…

Logic connection network  

(a) The layout of scenario diagrams 

Fig. 8. Format of scenario diagram

& or Logic connective nodes  

Logic links connect logic connective nodes 

Single action node: the agent takes action Act with parameters p1,…pn

at time t . 
Act(p1,…pn)t:

Repetitive action node: the agent takes action Act repetitively starting 

at time t, where R-Exp defines the number of repetitions of the action.  Act(p1,…pn)

R-Exp 

t:

Continuous state assertion node: the agent’s state satisfies the 

predicate for a continuous period of time starting from t, where the 

period satisfies the expression C-Exp.

t:
C-Exp

Predicate

Temporal order between events: event B is after event A, while there 

may be other events between them, where T-Exp is the constraints on 

the time gap between the events. 
BA T-Exp

T-Exp
A B

Temporal order between events: event B is immediately after event A,

where T-Exp is the constraint on the time gap between event A and B.

State assertion node: the agent’s state satisfies the predicate at time t.t: Predicate

Fig. 9. Notations of scenario diagram

The swimmer(s) of a swim lane can be in one of the following forms: (a) ∀x ∈ C,
where C is a caste and x is a bounded variable; this means all agents of caste C take
the same sequence of actions specified in the swim lane. (b) ∃x ∈ C, where C is a
caste and x is a bounded variable; this means there is at least one agent in caste C
that takes the sequence of actions specified in the swim lane. (c) α ∈ C, where α is
an agent in caste C; this means that agent α takes the sequence of actions specified
in the swim lane.
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Figure 9 depicts the notations to specify visible events by nodes and temporal
ordering by arrows in scenario diagrams, as well as logic connective nodes and links
for the combination of situations.

For example, Fig. 10 describes a scenario where Greenspan announces that the
interest rate will decrease by 0.25 points and all stock market analysts recommend
buying Microsoft shares.

Bully_Market 

Greenspan All A: Stock_ Market_Analyst

NewRate( , 0.25) Recommend(Buy, Microsoft) 

&

Fig. 10. Example of scenario diagram

3.4.2 Behaviour Diagrams

A behaviour diagram is associated to a caste to define a set of behaviour rules for
the agents of the caste. The notation of behaviour diagrams includes the notation of
scenario diagrams plus those in Fig. 11.

Scenario

Action arrow: link from behaviour rule’s transition bar to result event.

Transition bar: conflux of scenario, precondition and previous events as

premise of behavior rule. 

Precondition node: give the precondition of an event.Precondition

Scenario node: a scenario identifier, or a detailed scenario description.

Fig. 11. Notation for behaviour diagrams

A behaviour diagram contains event nodes linked together by the temporal order-
ing arrows as in scenario diagrams to specify the agent’s previous behaviour pattern.
A transition bar with a conflux of scenario, precondition and previous pattern and
followed by an event node indicates that when the agent’s behaviour matches the
previous pattern and the system is in the scenario and the precondition is true, the
event specified by the event node under the transition bar will be taken by the agent.
In a behaviour diagram, a reference to a scenario indicated by a scenario node can
be replaced by a scenario diagram if it improves the readability.
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For example, the behaviour diagram in Fig. 12 defines the behaviour of an under-
graduate student. It states that if the student is in the final year and the average grade
is ‘A’, he/she may request a reference from the personal tutor for the application to
a graduate course. If the personal tutor agrees to be a referee, the student may apply
for a graduate course. If the department office offers a position in a graduate course,
the student will join the Graduates caste and retreat from the Undergraduates caste.

Fig. 12. An example of a behaviour diagram

4 Consistency Constraints on the Models

Consistency constraints are the conditions on the uses of diagrammatic notations,
variables and names, types and symbols so that a set of well-formed diagrams can
be regarded as a meaningful model. These conditions are usually related to the se-
mantics of the diagrams. However, in order to enable the automated checking of a
model effectively and efficiently, consistency constraints often have to be simplified
and represented as syntactic rules.

A typical example of such a consistency constraint is that the same identifier that
occurs at different places must refer to the same entity and an entity should be re-
ferred to by the same identifier even if it occurs at different places in the model. This
rule cannot be mechanically checked directly. Instead of checking the consistency
against this rule directly, we check a set of syntactical rules that represents the con-
sistency in some more concrete forms. For example, we can use one model as the
declaration of all entities and check all other occurrences of identifiers against the
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declaration. An alternative approach is to check if the entities referred to by the same
identifier have the same features. Such rules are necessary conditions of the consis-
tency rather than sufficient ones. However, well-defined consistency conditions can
significantly improve the quality of models just like type compatibility checking in
programming languages can detect programming errors.

In this section we define the consistency constraints for the CAMLE language.
These constraints are classified into two types. Intra-model consistency constraints
are those conditions that only involve the diagrams of the same type. Inter-model
constraints involve more than one type of diagrams.

4.1 Intra-model Consistency

4.1.1 Constraints on Caste Models

As discussed in Sect. 3.2, a caste diagram defines the castes in the system and three
kinds of relationships between them: inheritance, aggregation and migration. A well-
formed caste diagram must satisfy the following conditions.
Constraint (1a) A caste diagram defines a naming space. In this naming space each
node defines a caste with a unique name.
Constraint (1b) Each link defines a binary relation on castes by linking two nodes
in the diagram.
Constraint (1c) An inheritance relation and a migration relation must be associated
to two different caste nodes.
Constraint (1d) Inheritance relations must not form any loops in a caste diagram.

Aggregation and migration relations are allowed to form loops. It is not required
for an aggregation relation to be associated to different caste nodes.

4.1.2 Constraints on Collaboration Models

A collaboration model may contain a number of collaboration diagrams including
a general collaboration diagram (GCD) and a set of scenario-specific collaboration
diagrams (SCDs). A GCD serves as a declaration of what castes and their instance
agents are involved in the collaborations, while SCDs define the details of the col-
laboration protocols in various scenarios. Each SCD specifies a linear sequence of
actions taken by the agents in a specific scenario of collaboration. To be well formed
a collaboration diagram must satisfy the following conditions.
Constraint (2a) A caste or agent node in a collaboration diagram must have a
unique name.
Constraint (2b) The number assigned to an action must be unique, if any.

Let G be a GCD, S be the set of SCD and D ∈ S be any given SCD. Let
ANode(X), CNode(X) and Node(X) denote the set of agent nodes, the set of
caste nodes and the set of all nodes in the collaboration diagram X , respectively. Let
CName(x) denote the caste name of a node x. The nodes and arrows in G and those
in S must satisfy the following consistency conditions.
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Constraint (2c) Every agent node in the GCD G must appear in at least one SCD.
Formally,

∀n ∈ ANode(G).∃D ∈ S.(n ∈ ANode(D)) (6)

Constraint (2d) A caste node in the GCD must appear at least once in an SCD
as either a caste node or an agent node representing a specific agent of the caste.
Formally,

∀n ∈ CNode(G).∃D ∈ S.

(n ∈ CNode(D) ∨ ∃n′ ∈ ANode(D).(CName(n′) = CName(n))) (7)

Constraint (2e) Every caste node in an SCD must also appear in the GCD. Formally,

∀D ∈ S.∀n ∈ CNode(D).(n ∈ CNode(G)) (8)

Constraint (2f) For every agent node in any SCD, there must be either a node of the
same agent or the caste of the agent in the GCD. Formally,

∀D ∈ S.∀n ∈ ANode(D).

(n ∈ ANode(G) ∨ ∃n′ ∈ CNode(G).(CName(n′) = CName(n))) (9)

Assume that a = Act(p1, p2, . . . , pn) is an action associated to an arrow from
node b to c. We call 〈a, b, c〉 an interaction from b to c with action a and de-
fine Action(〈a, b, c〉) = a, Begin(〈a, b, c〉) = b and End(〈a, b, c〉) = c. Let
Interaction(X) be the set of all interactions in a collaboration diagram X .
Constraint (2g) Every interaction in the GCD must appear in at least one SCD,
where a caste node in GCD can be replaced by an agent node of the same caste in
the SCD. Formally,

∀αInteraction(G).∃D ∈ S.∃β ∈ Interaction(D).

(CName(Begin(α)) = CName(Begin(β))

∧CName(End(α)) = CName(End(β))

∧Action(α) = Action(β)

∧Begin(α) ∈ ANode(G) ⇒ Begin(β) ∈ ANode(D)

∧End(α) ∈ ANode(G) ⇒ End(β) ∈ ANode(D)) (10)

Constraint (2h) Every interaction in any SCD must also be defined in the GCD.
Formally,
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∀D ∈ S.∀α ∈ Interaction(D).∃β ∈ Interaction(G).

(CName(Begin(α)) = CName(Begin(β))

∧CName(End(α)) = CName(End(β))

∧Action(α) = Action(β)

∧Begin(α) ∈ CNode(G) ⇒ Begin(β) ∈ CNode(D)

∧End(α) ∈ CNode(G) ⇒ End(β) ∈ CNode(D)) (11)

As discussed in Sect. 3.3.2, CAMLE supports the decomposition of an agent
into a number of component agents in the same way as the analysis of the whole
system. The collaboration among the component agents can also be defined by a
set of collaboration diagrams. Thus, the consistency between diagrams at different
levels in the hierarchy of collaboration models of a system must be ensured. Let X
be a collaboration diagram for a caste. We use Env(X) to denote the environment
of X , i.e. the set of agent and caste nodes on the border of X .
Constraint (2i) The environment of an SCD must be identical to the environment of
the GCD. Formally,

∀D ∈ S.(Env(D) = Env(G)) (12)

For the sake of simplicity, we assume that a collaboration model M satisfies
the consistency constraints within one model discussed above. Therefore, we can
overload the notation Env(X) defined on diagrams to be the environment of the
model, i.e. for a model M and any diagram D in M , define Env(M) = Env(D),
provided that M satisfies condition (2i).

Let C be a compound caste in a collaboration model M , and MC be the collab-
oration model for C. That is, MC specifies the collaborations between C’s compo-
nents. The environment of C defined in M should be consistent with the environment
description in MC . The following two constraints are imposed on the models at dif-
ferent levels.

Constraint (2j) The set of agents and castes in C’s environment described in M must
be equal to the set of agents and castes in MC’s environment description. Formally,

∀n.(n ∈ Env(MC) ⇔

∃α ∈ Interaction(G).(n = Begin(α) ∧ C = End(α))) (13)

where G is the GCD in M .
Constraint (2k) The interactions that C participates in as an observer described in
M must be realized as interactions between environment elements and C’s compo-
nents in MC . Formally,
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∀α ∈ Interaction(G).∃β ∈ Interaction(GC).

(End(α) = C ⇒ Begin(α) = Begin(β)

∧Action(α) = Action(β)

∧Begin(β) ∈ Env(GC)

∧End(β) ∈ Component(GC)) (14)

where GC is the GCD in MC and Component(GC) is the set of C’s components
depicted in GC .

4.1.3 Constraints on Behaviour Models

A behaviour model associated to a caste may contain two kinds of diagrams: scenario
diagrams (SDs) and behaviour diagrams (BDs). The following well-formedness con-
ditions are imposed on BDs and SDs.

Constraint (3a) The temporal order between events must be linear, i.e. the in-degree
and out-degree of an event node must be less than or equal to 1.
Constraint (3b) The logic connective nodes ‘AND’ and ‘OR’ are binary operators,
and ‘NOT’ is the unitary operator.
Constraint (3c) A transition bar has at most three nodes directly connected to it: at
most one scenario (may be a logical combination of several scenario nodes), at most
one precondition node and at most one event node.

Each scenario reference node in a BD refers to a scenario defined in an SD.
Therefore, a consistency condition on the relationship between a BD and the SDs in
one behaviour model is defined as follows.
Constraint (3d) The set of scenarios referred to in a BD by using scenario reference
nodes is a subset of the scenarios defined by SDs. Formally, let C be a caste, DC

be the behaviour diagram of caste C, and SC be the set of scenario diagrams of C.
Fromally,

∀n ∈ ScenarioNode(DC).∃S ∈ SC .(Name(n) = Name(S)) (15)

4.2 Inter-model Consistency

This subsection discusses the consistency between different types of models, namely
the inter-model constraints. In the sequel, models are assumed to be consistent with
regard to the intra-model constraints defined above.

4.2.1 Consistency Between Collaboration Models and Caste Models

Let CD be the set of collaboration diagrams in a collaboration model, and C the
caste model for the system in question.
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Constraint (4a) The set of castes in the collaboration model must be a subset of the
castes in the caste model. Formally,

∀D ∈ CD.∀n ∈ Node(D).∃n′ ∈ Node(C).(CName(n) = Name(n′)) (16)

It is possible that a caste in the caste model does not appear in any collabora-
tion diagram. For example, a caste can be an abstract caste, which has no direct
instance agent and any instance of the caste is always an instance of its sub-caste.
The behaviours of the agents of the abstract caste can be defined by its sub-castes.
Consequently, the abstract caste may not occur in any collaboration diagram.

Let CM be the collection of collaboration models of the system. Let x be a caste
in the system, and Mx be the collaboration model for x. For models MA and MB

in CM , we say that MB is an immediate refinement of model MA and write MB �
MA, if B is the component caste of caste A. Let Aggr(C) be the set of aggregation
relations in the caste model C.

Constraint (4b) The hierarchical structure of the collaboration models must be con-
sistent with the whole–part relations between castes defined in a caste diagram. For-
mally,

∀MA,MB ∈ CM.(MB � MA ⇒ ∃R ∈ Aggr(C).(R(B,A))) (17)

4.2.2 Consistency Between Behaviour Models and Caste Models

Due to the existence of inheritance relations, some castes may have no explicit be-
haviour definition. Therefore, we have the following consistency conditions on the
relationship between a caste model and the set of behaviour models.

Let BM be the set of behaviour models of a system, and C the caste model. The
caste with a behaviour model X defining its behaviour is denoted by Caste(X).

Constraint (4c) Each behaviour model B in BM defines the behaviour of a caste
and the caste must be in the caste model. Formally,

∀B ∈ BM.∃n ∈ Node(C).(Caste(B) = n) (18)

In a behaviour model, say, of caste B, the description of scenarios may refer to
the agents in the environment of B. Let Agents(B) be the set of agents referred to
in a behaviour model B, and CasteOf(x) the caste of such an agent.

Constraint (4d) Every agent in a scenario in a behaviour model must have its caste
defined in the caste model. Formally,
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∀B ∈ BM.∃a ∈ Agents(B).∃n ∈ Node(C).(CasteOf(a) = Name(n)) (19)

In a caste model, an agent’s change of casteship is described through a migration
relation between the castes. In a behaviour model, an agent’s change of casteship is
defined through actions JOIN(caste), MOV ETO(caste) and QUIT . Such infor-
mation in the behaviour model must be consistent with the caste model.

Constraint (4e) Let BC be the behaviour model for caste C.

* BC contains an action JOIN(C ′), where C ′ is a caste name, if and only if there
is a participate migration relation from C to C ′ in the caste model.

* If BC contains an action MOV ETO(C ′), where C ′ is a caste name, there must
be a migrate relation from C to C ′ in the caste model.

* If BC contains an action QUIT , there must be a migrate relation from C to some
caste in the caste model.

* If there is a migrate from C to some caste (say C ′) in the caste model, there must
be either a MOV ETO(C ′) or QUIT action in the behaviour model of C.

By ‘an action in a behaviour model’, we mean a result action of a behaviour rule,
depicted as an action node immediately after a transition bar in a BD.

4.2.3 Consistency Between Collaboration Models and Behaviour Models

Both collaboration models and behaviour models define the behaviour of agents.
However, collaboration models define the behaviours of agents from an inter-agent
interaction point of view, while behaviour models are from the view of agents’ inter-
nal activities. Due to the overlap in the information provided by these two types of
models, consistency between them is of particular importance.

Let Components(C) be the set of C’s component castes.
Let V isibleActions(C) be the set of visible actions of caste C defined in the

collaboration model. Let BX be the behaviour model for caste X , Rules(B) be the
set of rules in the behaviour model B, and Action(r) be the result action of the rule
r.

Constraint (4f) Every visible action of caste C defined in the collaboration models
must occur in the behaviour model of C or at least one of C’s components as a result
action. Formally,

∀a ∈ V isibleActions(C).

((∃r ∈ Rules(BC).(a = Action(r))

∨(∃M ∈ Components(C).∃r ∈ Rules(BM )).(a = Action(r))) (20)

Let G be a caste or agent that has a communication link to caste C in the collab-
oration model. We call G a collaborator of caste C and write Collaborators(C) to
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denote the set of C’s collaborators. Let Scenarios(B) be the set of scenarios used in
a behaviour model B, and Ref(Sc) denote the set of castes or agents that a scenario
Sc refers to.

Constraint (4g) For each scenario used in the definition of caste C’s behaviour,
the agents and/or castes that the scenario refers to must occur in the collaboration
model as C’s collaborators. Formally,

∀Sc ∈ Scenarios(BC).∀G ∈ Ref(Sc).(G ∈ Collaborators(C)) (21)

Notice that an actor in a scenario may be specified with a qualifier, e.g. ‘∀A :
CasteX’, and ‘∃Y : CasteX’. In such cases, the caste CasteX must be a collabo-
rator of caste C. If the actor of a scenario refers to a specific agent, i.e. in the form of
‘AgentM : CasteX’, the agent AgentM of caste CasteX must be a collaborator.

Constraint (4h) The agents and castes referred to in a scenario must be elements in
the environment of the caste described by the collaboration model. Formally, let C
be the caste described by a behaviour model B. Formally,

∀Sc ∈ Scenarios(B).∀G ∈ Ref(Sc).(G ∈ Env(C)) (22)

where Env(X) is the set of castes and agents in X’s environment description.
The collaboration between an agent A of caste C and other agents may be real-

ized through the collaboration of A’s component agents. Therefore, we do not require
all collaborators of caste C to be referred to in the definition of caste C’s behaviour.

Let p1, p2, . . . , pn be the sequence of actions of a caste C (or an agent of caste
C) described in a scenario Sc. Each pi, i = 1, 2, . . . , n, is called a referred action of
caste C in scenario Sc. We write ReferredActions(C, Sc) to denote the set of all
such actions.

Constraint (4i) Every referred action in a scenario used in a behaviour diagram
must be a visible action of the caste described by the scenario. Formally,

∀Sc ∈ Scenarios(BC).∀a ∈ ReferredActions(C, Sc).

(a ∈ V isibleActions(C)) (23)

It is not required that all visible actions of a collaborator should be referred to
in the definition of a caste’s behaviour, because the collaboration may be realized
through component agents.

4.3 Discussion

Consistency conditions can play at least two important roles in model-driven devel-
opment. First, consistency conditions serve as check points for quality assurance in
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the modelling process. Violation of consistency conditions indicates the existence
of contradictions in the model. Therefore, automatic consistency checks can help
engineers to detect errors at the modelling stage, hence prevent errors from being
propagated to later stages. Inconsistency may also be caused by conflict in require-
ments. Consistency checks on requirement models help to identify and thereafter
to resolve and manage such conflict. Second, in model-driven development of soft-
ware systems, it is desirable to transform automatically one model to another model
(maybe partial model), and to generate code (or code framework) from models. De-
sign and implementation of such tools must ensure that the transformation rules pre-
serve the models’ meanings. Therefore, consistency between the original and the
resultant must be guaranteed. Consistency conditions provide a means to specify
formally the correctness of the transformation rules.

The consistency constraints defined above have been used for both of the above
purposes in the implementation of the CAMLE environment [234]. The consistency
constraints defined in this chapter are computable and have been directly imple-
mented in the environment as consistency check tools. Diagnostic information as
the result of the check is recorded to help users to locate and correct errors. The
partial diagram generator in the environment generates partial models (incomplete
diagrams) from existing diagrams to help model construction. The rules to generate
partial models are based on the consistency constraints so that the generated partial
diagrams are consistent with existing ones. Preliminary case studies show that both
consistency check and partial model generation are very helpful to improve the qual-
ity of models and software engineers’ productivity. Besides model construction and
consistency check, another main function of the CAMLE environment is to transform
graphic models automatically into the formal specifications in SLABS. Consistency
check also simplifies the implementation of the automatic transformation because
less error processing is required.

Well-defined visual notations for modelling software systems’ structures and be-
haviours have the advantages of readability and preciseness due to their semi-formal
nature. A common feature of such visual notations is that multiple views are uti-
lized to model a system’s different aspects and/or at different levels of abstraction.
Since different views emphasize different aspects of a system or different levels of
abstraction, consistency between the views has become a serious problem in the de-
velopment of models. It is a crucial quality attribute of software models. It is widely
recognised as very desirable to check automatically the consistency of software mod-
els [463, 265]. However, due to the semi-formal nature of modelling languages, the
definition of effective and computable consistency constraints is a difficult and non-
trivial problem [297]. Most existing modelling languages, e.g. UML, have no explic-
itly defined consistency constraints.

The past few years has seen a rapid increase in the research on defining consis-
tency conditions and implementing consistency check tools for modelling languages,
especially for UML [342, 19, 341, 21]. Among the related works on consistency
check, Xlinkit is a flexible tool for checking the consistency of distributed heteroge-
neous documents [298]. It comprises a language for expressing constraints between
such documents, a document management mechanism and an engine that checks the
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documents against the constraints. In comparison with Xlinkit, our approach is lan-
guage specific. The direct implementation of consistency constraints as a part of the
modelling environment is highly efficient and effective in detecting errors. In ad-
dition, the explicitly defined constraints form a base for automatic transformations
between models. Formal methods, such as model checking, have also been used for
checking the consistency between multiple views of software specifications, e.g. in
[220, 374]. It requires translating models into a formal notation as the input to a
model checker, while assuming that syntactic errors have been removed before the
translation. Therefore, to check consistency before translation is still necessary.

5 Automatic Generation of Formal Specifications

As shown in the previous sections, graphic models in the CAMLE notation are suit-
able for the representation of users’ requirements. To develop MAS further in a mod-
ular way in which castes are used as the templates of agents and the basic organi-
zational units of software systems, it is desirable to specify MAS with modularity.
That is, all information required to design and implement a caste should be specified
in one module, but nothing more. However, in the CAMLE language, the informa-
tion about a caste is scattered over various diagrams. This section presents the rules
and algorithms that transform models in CAMLE to formal specifications in SLABS,
which provide modular specifications of MAS.

5.1 The Specification Language SLABS

SLABS is a model-based specification language with the conceptual model described
in Sect. 2 as its meta-model [468, 470].

A formal specification in SLABS consists of a set of descriptions of castes.
Figure 13 shows the structure of the description of a caste in SLABS. The clause
‘C ⇐ C1, C2, . . . , Cn’ specifies that caste C inherits the structure, behaviour and
environment descriptions of existing castes C1, C2, . . . , Cn. The environment de-
scription explicitly specifies a subset of the agents in the system that may affect the
agent’s behaviour. The state space of an agent is described by a set of variables with
keyword VAR. The set of actions is described by a set of identifiers with keyword
ACTION.

A behaviour rule has the following structure:
BehaviourRule ::=

[〈RuleName〉]Pattern[Prob] → Event,[if Scenario][where PreCond];
A pattern describes the behaviour of an agent by a sequence of observable

state changes and actions. In addition to the pattern of individual agents’ behav-
iour, SLABS also provides the facility of scenario to describe the global situation
of the whole system. Informally, a scenario is a set of typical combinations of the
behaviours of related agents in the system. The syntax of scenarios is given below:

Scenario ::= AgentName : Pattern | AtomicPredicate
| ∃[ArithmeticExp]AgentV ar ∈ CasteName : Pattern



80 Hong Zhu and Lijun Shan

Fig. 13. Caste descriptions in SLABS

| ∀AgentV ar ∈ CasteName : Pattern
| Scenario&Scenario|Scenario ∨ Scenario| Scenario

Pattern ::= [{Event[ ‖ Constraint]/, }]
Event ::= [TimeStamp :][Action][!StateAssertion]
Action ::= AtomicPattern[∧ArithmeticExp]
AtomicPattern ::= $ |∼| ActionV ariable

| ActionIdentifier[({ArithmeticExp})]
TimeStamp ::= ArithmeticExp
An informal definition of the semantics of various forms of scenarios and patterns

is given in Table 1. The following are some examples of scenarios:

∃p ∈ Parties : t2004 : [Nominate(Bush)] ‖ t2004 = (March/2004) (24)

This describes the situation that at least one agent in the caste called Parties took the
action Nominate(Bush) at the time of March 2004.

(µx ∈ V oter : [vote(Bush)] > µx ∈ V oter : [vote(Kerry)]) (25)

This describes the situation that there are more agents in the caste Voter who took the
action of vote(Bush) than those in the caste who took the action of vote(Kerry).

An important feature of the formal specification language SLABS is that it pro-
vides a modular specification of MAS in which each caste is specified by one caste
description. Each caste description contains all necessary information about one
caste but nothing more. The analysis, design and implementation of a caste can be
based on the caste description without referring to other units. The modular specifi-
cations in SLABS are composable and reusable [467]. Therefore, it is more suitable
to be used for further development of MAS than graphic models where the spec-
ification of a caste is spread over a number of diagrams due to the multiple view
principle.

5.2 The Overall Transformation Algorithm

The following algorithm translates each caste in a CAMLE model into a caste de-
scription in SLABS. Various parts of caste description are generated according to the
information spread in various models. In the sequel, we assume that graphic models
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Table 1. Semantics of scenario descriptions

Pattern/Scenario Meaning

$ The wild card; it matches with all actions
∼ The silence event
Action variable matches an action
P∧k A sequence of k events that match pattern P

Action(a1, . . . , ak) An action takes place with parameters that match (a1, . . . , ak)
!Predicate The state of the agent satisfies the Predicate

[p1, . . . , pn] The previous sequence of events matches the patterns p1, . . . , pn

A : P Agent A’s behaviour matches pattern P

∀X ∈ C : P The behaviours of all agents in caste C match pattern P

∃[m]X ∈ C : P There are at least m agents in caste C whose behaviour matches pattern
P . The default value of m is 1

µX ∈ C : P The number of agents in caste C whose behaviour matches P

S1 ∧ S2 Both scenario S1 and scenario S2 are true
S1 ∨ S2 Either scenario S1 or scenario S2 or both are true
∼ S Scenario S is not true

are consistent with regards to the consistency constraints defined in Sect. 4.
ALGORITHM 1. {Overall}

INPUT: 〈CM,CLM,BM〉, /* CM is a caste model,
/* CLM is a collaboration model, and
/* BM is a behaviour model

OUTPUT: {Ci}i∈I , /* Ci is a caste description, i ∈ I .
BEGIN

FOR each node N in caste model CM DO
BEGIN /* Generate a caste description with caste name N

/* Step 1: Generate inheritance clause
IF there is an inheritance arrow from node N to node A in CM ,
THEN A ∈ Ancestors(N);
/* Step 2: Generate environment description

IF there is an arrow from node X to node N in a CD in CLM
THEN

CASE X OF
X is an agent node with label ‘A : CasteName’:

‘A : CasteName’ ∈ Environment(N)
X is a caste node with label ‘CasteName’:

‘All : CasteName’ ∈ Environment(N)
END_CASE;

/* Step 3: Generate visible actions and variables
FOR each collaboration model CD in CLM that contains N
DO IF there is an arrow from N to X with ‘Action’ annotated

on the arrow
THEN ‘Action’ ∈ V isibleAction(N);



82 Hong Zhu and Lijun Shan

END_FOR;
/* Step 4: Generate invisible actions and variables
FOR each collaboration diagram of caste N
DO IF there is an arrow from caste N to a component node X

with ‘Action’ annotated on the arrow
THEN ‘Action’ ∈ InvisibleAction(N);

END_FOR;
/* Step 5: Generate behaviour rules
GenerateBehaviourRule(BMN ),

/* BMN is the behaviour model of caste N .
END_FOR

END_ALGORITHM
The generation of castes’ behaviour rules is more complex compared with other

parts of caste’s structure. It is discussed in the next subsection.

5.3 Generation of Behaviour Descriptions

Generation of a caste’s behaviour description from a behaviour diagram consists of
two main steps. The first is to recognize the rules in a network of interconnected
nodes in the diagram. The second is to generate a behaviour rule in SLABS syntax
from each rule recognized in the first step. The algorithm is as follows:
ALGORITHM 2. {Generate Behaviour Rules};

INPUT: BMN /* a behaviour model for caste N
OUTPUT: R = {ri}i∈I ,

/* a set of behaviour rules in SLABS syntax for caste N
VARIABLE: P = {pi}i∈I , /* a set of rules recognized from BMN

BEGIN
P := RecogniseRules(BMN );
FOR each pi in P DO ri := TranslateRule(pi) END_FOR

END_ALGORITHM

5.3.1 Recognition of Behaviour Rules

In a behaviour diagram, several behaviour rules may be depicted independently or
interconnected. The recognition of behaviour rules is achieved through an analysis of
the diagram’s structure. It converts a diagram into a set of graphically unconnected
rules. Figure 14 shows the structure of rules.

When a behaviour diagram contains several interconnected behaviour rules such
as in Fig. 15, the number of transition bars in the diagram determines the number
of rules contained in the diagram. For example, three rules can be recognized from
the behaviour diagram given in Fig. 12. The recognition algorithm uses the transition
bars in the diagram as boundaries between various rules. For instance, in Fig. 15 the
sequence of event nodes between the first and the second transition bar are the first
rule’s result events. They are also the second rule’s pre-events. Generally, the event
nodes on the path from transition bar T1 to transition bar T2 are result events of the
rule corresponding to T1. They are also the pattern of the rule corresponding to T2.
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Pattern of the 

agent’s previous 

behaviour

Scenario Precondition

Event A1

Event AK

…

Event BL

Event B1

Actions to be 

taken

…

Fig. 14. Structure of behaviour rule in behaviour diagrams

Rule1

Rule2

EventAScenario1 Precondition1

EventB

EventC

Scenario2 Precondition2

EventD

EventE

Fig. 15. Recognition of rules in behaviour diagrams

5.3.2 Translation of Rules into SLABS Format

As shown in Fig. 16, a behaviour rule defines the cause and effect of an agent’s be-
haviour through five parts: (a) a scenario that describes the situation in the environ-
ment, (b) a pattern that describes the agent’s own previous behaviour, (c) a precon-
dition on the agent’s internal state, (d) a sequence of resulting events that specifies
the actions to be taken, and (e) a transition bar that links these parts together. The
first three parts, which are connected to the transition bar through logical and tem-
poral links, constitute the premise of a rule to define ‘when to go’. The transition
bar is connected to one or a sequence of event nodes, which indicates ‘what to do’.
Figure 16 gives the rule for transforming a behaviour rule in diagrammatic notation
to SLABS syntax. Figure 17 shows a typical behaviour rule, which governs UN-SC
member’s behaviour in a voting process, and its equivalent form in SLABS syntax.
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Scenario Precondition
Pattern

Events

Pattern | Events IF Scenario WHERE Precondition

Fig. 16. Top-level transformation rule

Vote(proposal, vote) 

president: Chair 

Distribute(proposal)

CallVote(proposal, self) 

$ Vote is appropriate 

to the proposal 

[$] |  Vote(proposal, vote),   

 if president Chair.[Distribute(proposal),$^k, CallVote(proposal, self)]; 

 where (vote is appropriate to the proposal) 

Fig. 17. Example of the transformation of behaviour rules

The translation of the precondition of a behaviour rule from the precondition
node in the behaviour diagram is fairly straightforward and the details are omitted
for the sake of space. The translation of scenarios and patterns deserves a few words.

5.3.3 Transformation Rules for Behaviour Patterns

In a behaviour diagram, a pattern as a list of events in a behaviour rule is depicted
as a set of action nodes or state nodes connected by temporal links. Therefore, the
formal specification of a pattern can be derived as a combination of the specifications
of the events. Figure 18 illustrates some of the transformation rules for various kinds
of nodes and links.

5.3.4 Transformation Rules for Scenarios

A scenario description node consists of three parts: the scenario name, a set of swim-
ming lanes and a logical connective network comprising logical connective nodes
and links which connect the set of swimming lanes. Figure 19 shows the transforma-
tion rule for swimming lanes, where Qu is a qualifier ∀ or ∃.

Figure 20 shows the formal specification generated by the CAMLE tools from
the behaviour diagram given in Fig. 12.
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Act(p1,…pn)
R-Exp 

t t: Act(p1,…pn)^R-Exp 

t

C-Exp 

Predicate t: !Predicate^ C-Exp 

EventA EventB [EventA, EventB]

EventA EventB [EventA, $^k, EventB] 

Fig. 18. Transformation rules for nodes and links

Qu A Caste . Pattern 

Qu A: Caste 

Pattern

Fig. 19. Transformation rule for pattern nodes

Fig. 20. An example of an automatically generated formal specification
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5.4 Discussion

Our approach to the development of MAS follows a model-driven development
(MDD) point of view. Models are not just supportive documents for facilitating im-
plementation, but they are also treated as an indispensable part of software artefacts.
Model transformation, therefore, is widely recognized as at the heart of MDD. It can
serve for various development purposes, such as model refactoring (p. 199 of this
book), PIM-to-PIM and PIM-to-PSM (p. 91 of this book), code generation (p. 237 of
this book), etc.; see e.g. p. 19 of this book for a classification of the kinds of transfor-
mations that can be performed during MDD activities. Different to the above works,
our purpose of transformation from CAMLE models to SLABS formal specification
is for combining the advantages of informal and formal methods.

In the software engineering literature, a number of proposals have been advanced
to combine graphic notation and formal methods, such as the employment of dual
languages and method integration [86]. In our previous work, an automated tool was
developed to translate structured models of software requirements definitions into
Z [235]. A flexible framework to define mappings from graphic models to formal
specifications was proposed in [338]. A prototype program to convert an adapted
form of UML class diagrams into specifications in the B language was reported in
[399]. The work in [267] presented some schemes of the derivation of B specifica-
tions from UML behavioural diagrams. An alternative approach is to project formal
specifications back to diagrammatic models. For example, techniques were presented
in [86] to transform the integrated formalism to UML diagrams. Another approach is
to combine diagrammatic notation with formal notation in one language: [213] dis-
cussed how UML can be augmented with Z in the Unified Process. The work most
closely related to this chapter is perhaps that reported in [338], which employed two
languages and defined mappings from front-end notations to formal models. The
customizable framework works with different front-end notations and formal mod-
els. It supports mappings of analysis results obtained on the formal model back to
the front-end notation chosen by the practitioners. In comparison, our approach is
language specific, but more efficient.

6 The CAMLE Modelling Environment

Modelling environments containing automated tools can play a significant role in
MDD as discussed on p. 139 of this book and demonstrated on pp. 289, 35, 199, 329
and 237 of this book for the tools that support various MDD activities. This section
gives a brief description of our automated modelling environment.

6.1 The Overall Architecture

A software environment to support the process of system analysis and modelling
in CAMLE has been designed and implemented. The main functionalities of the
environment are:
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(1) Model construction. This consists of a set of graphical editors to support the con-
struction of models and tools for version control and configuration management.

(2) Model consistency check. This checks if a model satisfies the consistency con-
straints defined in Sect. 4.

(3) Automated generation of formal specifications. This provides the function of
transforming graphic models into the corresponding formal specifications in
SLABS.

Figure 21 shows the architecture of the environment.
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Fig. 21. The architecture of the CAMLE environment

In addition to the consistency checker and formal specification generator that
have been discussed in detail in Sect. 4 and 5, respectively, the diagram editor
supports the manual editing of models through a graphic user interface. The well-
formedness checker ensures that the user-entered models are well formed. The di-
agram generator can generate partial models (incomplete diagrams) from existing
diagrams to help users in model construction. The rules to generate partial models
are based on the consistency constraints so that the generated partial diagrams are
consistent with existing ones according to the consistency conditions.
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6.2 Case Studies

A number of systems have been modelled in CAMLE and their formal specifications
in SLABS generated as the case studies of the modelling language and its modelling
environment. The following are these systems:

(1) United Nations’ Security Council. The organizational structure and the work
procedure to pass resolutions were modelled and a formal specification of the
system in SLABS was generated. Details of the case study as well as modelling
in other agent-oriented modelling notations can be found on AUML’s website at
the URL: http://www.auml.org/.

(2) Amalthaea. Amalthaea is an evolutionary MAS developed at MIT’s Media Lab
to help the users to retrieve information from the Internet [295]. A formal speci-
fication of the system was generated from a model in CAMLE.

(3) University. This is a partial model of the university organization. The objective
of the case study was not to provide a complete model; instead, it aims at pro-
viding illustrative examples to demonstrate the style of modelling in CAMLE.
Examples given in this chapter were taken from this case study.

(4) Web services. The case study modelled the architecture of web services and an
application of web services on online auctions. A formal specification in SLABS
of the architecture and application was generated successfully. See [472] for
more details.

Before the development of modelling language and the environment, a number
of agent-based systems were formally specified in SLABS manually. These sys-
tems include Maes’ personal assistant Maxims [283, 468], the speech-act theory
[396, 397, 468], a simplified communication protocol [467], a distributed resource
allocation algorithm, an ant colony [468], etc. In comparison with the systems in
the case studies, these systems are less complicated and hence more manageable to
write the formal specifications without tool support. The formal specification of the
Amalthaea system in SLABS was first developed manually, which met much diffi-
culty due to the complexity of the system. It was only completed with the help of
informal diagrams to organize the ideas [469]. This diagrammatic notation was later
developed into the modelling language CAMLE. Using the modelling language and
the automated tool, the system was modelled without too much difficulty and the for-
mal specification was generated successfully. We found that the use of the modelling
language was very helpful. It is much more efficient to develop formal specifications
through modelling with the help of automated tools than manual approaches; espe-
cially, the automated consistency checking facility helped to remove syntax errors
in the models. In the case studies, we found that the CAMLE language was highly
expressive to model information systems’ organisational structures, dynamic infor-
mation processing procedures, individual decision making processes, and so on. The
models in CAMLE were easy to understand because they naturally represent real-
world systems.



CAMLE: Caste-Centric Modelling of Multi-Agent Systems 89

7 Conclusion

In this chapter, we proposed a model-driven approach to the development of MAS.
It combines graphical models with formal specifications through the employment of
automated tools. It is based on a common meta-model of MAS, which is indepen-
dent of implementation platforms and applicable to all types of agent theories and
techniques. A modelling language CAMLE was introduced and an automated mod-
elling environment was reported. We addressed two important issues in model-driven
software development of MAS. The first was the consistency problem of the models
with multiple view representations. We formally defined consistency constraints as a
set of computable rules and implemented them as automated consistency checkers.
The second was the automation problem in model-based development. An automated
specification generator was designed and implemented to transform graphic models
into formal specifications. While graphic models containing a number of diagrams
in various views and at different levels of abstraction are more suitable to the repre-
sentation and understanding of users’ requirements involving various stakeholders,
modular formal specifications are more suitable to be used by software engineers as
the bases for further design and implementation of the specified system. The auto-
mated specification generator bridges the gap between them. Case studies show that
the approach is effective and efficient for the development of MASs, especially at the
requirements analysis and specification and system design stages.

We are further investigating language facilities that directly support efficient im-
plementations of MASs and the techniques that enable graphic models and formal
specifications to be automatically transformed into executable code.
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Summary. Model transformations are one of the core technologies needed to apply OMG’s
model-driven engineering concept for the construction of real-world systems. Several for-
malisms are currently proposed for the specification of these model transformations. A suit-
able formalism is based on graph transformation systems and graph transformation rules. The
chapter provides an overview about the needed concepts to apply graph transformations in the
context of model driven engineering and we show the technical feasibility based on several
tools and applications.

1 Introduction

Model-driven engineering (MDE) is a software engineering approach that promotes
the usage of models and transformations as primary artifacts. The Object Manage-
ment Group (OMG) [306] proposed the Model-Driven Architecture (MDA) as a set
of standards for integrating MDE tools. These standards focus on the usage of Plat-
form Independent Models (PIMs), which help to develop software on a higher level
of abstraction by hiding platform specific details. Thus they solve some of the prob-
lems that are caused by the ever-increasing complexity of software systems. For fur-
ther reduction of complexity PIMs can be modeled with several viewpoints (e.g.,
structure models, behaviour models, quality assurance models, test cases), in order
to focus on particular concerns within the system separately.

For the construction and evolution of these viewpoint models, it is necessary to
ensure consistency between the different models. To enable this consistency, model
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transformations are used to update all other viewpoint models in case one model
has been changed. Furthermore, model transformations can help to construct a new
viewpoint model based on the existing models. All these model transformations are
PIM-to-PIM transformations or model-to-model transformations, which can also be
called horizontal transformations, because they are used to transform models on the
same level of abstraction. To execute the PIM on the target platform, a Platform
Specific Model (PSM) must be generated. This generation also needs appropriate
model transformations that enrich the PIM with platform specific details. These
model transformations are vertical transformations, respectively called as PIM-to-
PSM transformations.

To conclude this, model transformation is the heart and soul of model driven
software engineering [388]. To standardize these model transformations the OMG
recently announced a request for proposals (RFP MOF 2.0 Query/Views/Transfor-
mation) [165], which includes requirements for the transformational language. This
transformation language and the underlying formalism should provide the following
characteristics:

(1) The formalism should support the specification of horizontal and vertical model
transformations.

(2) The formalism should enable the automatic application of the model transfor-
mation rules.

(3) The transformation rules should be easy to understand.
(4) The transformation rules should be adaptable and reusable.

Based on these requirements, we propose to use graph transformations to specify
and apply model transformations in MDE. The reasons for this are: (a) graphs are a
natural representation for models, since most modeling languages are formalized by
a visual abstract syntax definition, (b) graph transformations provide a formal theory
and some established formalisms for the automatic application, (c) we believe that
graph transformation rules can be easily and intuitively specified (unfortunately there
are currently no empirical studies to prove this) and (d) the complexity of the graph
transformation rules and the application formalisms can be hidden for the end user.

This chapter is structured as follows. Section 2 summarizes the theoretical back-
ground of graphs and graph transformations. Furthermore, alternative approaches
are discussed. In Sect. 3 and 4 the state-of-the-art graph transformation tools are de-
scribed to illustrate their applicability for horizontal and vertical model transforma-
tion. In Sect. 5 it is shown how the correctness of the applied graph transformations
can be verified. Finally, conclusions are drawn and directions for future work are
discussed.

2 A Basic Introduction to the Graph Transformation Concepts

In this section, we introduce the basics of graph-based structures. Furthermore, we
describe the fundamental graph transformation theory and give an overview of useful
graph transformation variants that can be used to specify model transformations.
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2.1 Directed Typed Graphs and Graph Morphisms

We choose directed typed graphs as the basic structure for graph-based model trans-
formations, because they are well suited for specifying different types of models
[29]. These graphs contain nodes and edges, which are instances of node and edge
types. The instance relation between the nodes and edges and their types is similar
to the relation between objects and classes in object-oriented software engineering.
Due to this, a node or edge type can contain a set of application specific attributes and
operations. To model the graph-based structure each edge is associated to a source
and a target node. Formally, a typed graph can be defined as follows:

Definition 1 (Directed Typed Graphs). Let LV be a set of node types and LE be a
set of edge types; then a directed typed graph G from the possible set of graphs G over
LV and LE is characterized by the tuple 〈V,E, source, target, type〉, with two finite
sets V and E of nodes (or vertices) and edges, a function type : V → LV ∪E → LE

which assigns a type to each edge and node and two functions source : E → V and
target : E → V that assign to each edge a source and a target node.

Another preliminary for the definition of graph transformation systems is graph mor-
phisms. These graph morphisms are structure and type-preserving mappings between
two graphs, which can be defined as follows:

Definition 2 (Graph Morphism). Let G = 〈V,E, source, target, type〉 and G′ =
〈V ′, E′, source′, target′, type′〉 be two graphs; then a graph morphism m : G → G′

consists of a pair of mappings 〈mV ,mE〉, with mV : V → V ′ and mE : E → E′,
which satisfy the following conditions:

• ∀e ∈ E : type′(mE(e)) = type(e)
• ∀v ∈ V : type′(mV (v)) = type(v)

If both mappings mV : V → V ′ and mE : E → E′ are injective (surjective,
bijective) then the mapping m : G → G′ is injective (surjective, bijective).

2.2 Graph Variants

In addition to the introduced directed typed graphs, several other variants have been
proposed in the graph transformation community. One basic variant uses undirected
edges. These undirected edges can be modeled in a directed graph with two contrary
edges for each undirected edge. Another variant are hypergraphs [181], where each
edge is associated to a sequence of source and target node. Due to this, these edges
are also called hyperedges. For the construction of hierarchical models, hierarchi-
cal graphs are important. These hierarchical graphs model the hierarchical structure
ether by (hyper)edge [91] or node [352] refinement.
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2.3 Graph Transformation and Graph Transformation Systems

Basic Principles

Graph transformation systems make use of graph rewriting techniques to manipulate
graphs. A graph transformation system is defined with a set of graph production
rules, where a production rule consists of a left-hand side (LHS) graph and a right-
hand side (RHS) graph. Such rules are the graph equivalent of term rewriting rules,
i.e., intuitively, if the LHS graph is matched in the source graph, it is replaced by the
RHS graph. Formally, a graph transformation rule can be defined as follows:

Definition 3 (Graph Transformation Rule). A graph transformation rule p =
〈GLHS , GRHS〉 consists of two directed typed graphs GLHS und GRHS which are
called the left-hand side and right-hand side of p. Furthermore the graph GI is an
interface graph, satisfying GI ⊆ GLHS and GI ⊆ GRHS .

For the application of a graph transformation rule to an application graph GAPP the
following simplified algorithm can be used, which contains the following steps:

(1) Identify the LHS GLHS within the application graph GAPP . For this, it is nec-
essary to find a total graph morphism m : GLHS → GAPP that matches the
LHS GLHS in the application graph GAPP .

(2) Delete all corresponding graph elements, w.r.t m, in the application graph GAPP

that are part of the LHS GLHS and are not part of the interface graph GI .
(3) Create a graph element in the application graph GAPP for each graph element

that is part of the RHS GRHS and is not part of the interface graph GI . Connect
or glue these added graph elements to the rest of the application graph GAPP .

For a formal description of the rule application formalisms, we refer to [74, 108],
where the formal foundations of the single pushout (SPO) and double pushout (DPO)
approach are reviewed. Currently these approaches have the most impact in the graph
transformation community.

Application Conditions

In graph transformation systems with a large number of graph transformation rules
it is often necessary to restrict the application of single rules. Therefore, in [182]
the concept of positive and negative application conditions (PACs and NACs) are
introduced. These application conditions are formally graphs that define a required
context (i.e., the presence of some nodes or edges) or a forbidden context (i.e., the ab-
sence of some nodes or edges). The fulfillment of these application conditions must
be checked before the rule is applied. Therefore, the presented algorithm must be ex-
tended with an additional step between the first and the second step that checks the
application conditions. With the introduction of application conditions graph trans-
formation rules become conditional productions, which enhances the expressiveness
of the graph transformation system (especially if NACs are used) [182].
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Specification of a Graph Transformation Rule

In traditional approaches for specification of graph transformation rules, the RHS
and the LHS of a rule are drawn separately. Throughout this chapter, the notation of
story diagrams [475] is used, which combines both sides. Story diagrams use UML
collaboration diagrams to model graph transformation, cf. [126, 476]. Consequently,
nodes become objects and edges become links between objects. Objects and links
in such collaboration diagrams marked with the �destroy� stereotype appear only
on the LHS of the corresponding graph transformation, i.e., they are deleted. The
stereotype �create� marks elements only used on the RHS, i.e., such elements are
created. Objects and links that have no stereotypes appear on both sides of the graph
transformation rule (see Fig. 1).

Story diagrams use programmed graph transformation rules. Due to this, a con-
trol structure can be specified that manages the order of the execution of transfor-
mation rules. Such a control structure is modeled using UML activity diagrams. The
transformation rules are then embedded into the activities.

Story diagrams use typed graphs. Graph schemata are modeled using UML class
diagrams (see Fig. 2 below). In graph transformations, the type is specified after the
object name separated by a colon. By omitting the type, bound objects are marked.
Bound objects are objects that are already known to the system either from previous
matchings or because they are passed as parameters to the transformation rule (as
done for the object afterElem in Fig. 1). Thus, a bound object does not compute a
new match but it reuses its old match.

More elaborate elements of graph transformations, like negative application con-
ditions, multi-objects, non-injective matching, are also supported by the story dia-
gram language. Some of these features will be discussed in Sect. 3.

List::addAfter (afterElem: ListElement, valueToAdd: String): Void

afterElem

«create»
next

«create»
next

«destroy» next ListElement:nextElem

«create»

valueToAdd:=value

ListElement:newElem

Fig. 1. Graph transformation “Fujaba-style”

The rule shown in Fig. 1 models the behavior of the addAfter method of a class
emphList. This method simply adds a new String value (passed as parameter value-
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ToAdd) into a list after a given element (passed as afterElem). This method consists
only of one activity; that means only one transformation rule. The pattern matching
starts with the bound afterElem node. From this node, an edged labeled next to a
node of type ListElement is searched. If such an edge is found, the targeting node is
called nextElem. Having found such a node, the pattern matching is completed and
the changes can be executed. First the next edge between afterElem and nextElem is
deleted. After that a new node newElem is created and its value attribute is set to the
passed valueToAdd parameter. Then two new next edges connecting this node with
the other two nodes are created. After that, the rule is completed and the method is
left.

2.4 Graph Transformation Variants

In this section we briefly introduce two alternative approaches that are suitable to
specify model transformations as presented in the following sections. These ap-
proaches are pair grammars [352] and triple graph grammars [382].

Pair Graph Grammars

Pair grammars and pair grammar rules were introduced by Pratt [352] in the early
1970s to specify graph-to-string translations. A pair grammar rule rewrites two mod-
els: a source graph and a target string. Thus it contains a pair of production rules (a
graph and a string production rule), which modify simultaneously the two participat-
ing models. Based on this, pair grammars are well suited to specify transformations
between graphs and strings. If the string production rule is substituted by a graph
production rule, pair grammars can be used for graph-to-graph translations.

Triple Graph Grammars

Triple graph grammars, as introduced in the early 1990s [382], are an extension
of pair graph grammars [352] to specify graph-to-graph translations and evolution.
Each triple graph grammar rule contains three graph productions: one operates on a
source graph, one on the target graph and one on a correspondence graph. This corre-
spondence graph describes a graph-to-graph mapping, which relates elements of the
source graph to elements of the target graph. Based on this mapping an incremental
change propagation is possible, which updates the target graph if an element in the
source graph is changed.

2.5 Alternatives for a Graph Transformation Approach

Gerber et al. provide a good overview of mainstream transformation approaches
[147]:
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• One alternative for graph transformation, developed by the OMG, would be the
Common Warehouse Metamodel (CWM) specification [344], which provides
concepts for black-box and white-box transformation specifications. Still, fine-
grained graph transformations can complement these CWM concepts. CWM
white-box specifications leave the actual production of target model elements
from source model elements unspecified in a string of source code that can be
implemented in any programming language. CWM black-box transformations
are even more abstract.

• XSLT [460] has become a popular alternative for describing model transforma-
tions. Peltier et al. [347] propose to consider metamodels as models: they use
MOF [312] as the metamodel of such models and use XMI [170] to serialize
their instances. An XSLT specification is also an XML document, describing a
transformation using both declarative and imperative constructs. Gerber et al.
found that the verbosity of the XML syntax leaded to specifications that were
difficult to read and to maintain.

• Text-based tools like perl and awk are also useful but only for simple transfor-
mations, because they cannot cope with the abstract syntax of models.

• Their own tool, GenGen, describes transformation rules as instances of a CWM-
inspired metamodel. The rules are implemented by transforming them to Java
code which can then manipulate models in MOF repositories. It is a rather pro-
cedural transformation language, and therefore, although powerful, lacks the ca-
pabilities like unification from declarative languages.

• The Mercury programming language [402], in contrast, is a purely declarative,
strongly typed logic language and offers these pattern matching features. This
leads to rules that are more compact and easier to understand. However, the
main problem experienced with this approach is that it is necessary, and hard,
to capture the semantics of the source and target models using the language type
system.

• Finally, F-Logic [254] is a complete formal model for deductive object-oriented
languages. It offers a flexible and compact syntax for defining rules that can be
interpreted at both the model and instance levels, and does not suffer from the
restrictions of the Mercury language.

The authors describe their attempt to map an EDOC Business Process [172] model
to the Breeze Workflow [93] model, using both the declarative and procedural ap-
proaches. From their experiment the authors derive a set of both functional and us-
ability requirements, needed to model mapping rules. They conclude that a declara-
tive approach is preferred, due to the simpler semantic model required to understand
the transformation rules, but acknowledge that for certain types of transformations a
procedural specification may remain necessary.

Küster et al. performed an initial comparison between a graph transformation
approach and a relational approach to model transformation [264]. Using the trans-
lation of statecharts to CSP as a benchmark for comparing the Consistency Work-
bench [112] to the QVT-Merge proposal [165], the authors concluded that both ap-
proaches were similar regarding the matching of patterns in a host model. Therefore,
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the new relational approach can build upon the insights of efficient model matching
as discussed by Dorr [87], Vizhanyo et al. [448] and Varró et. al. [440].

From a consistency maintenance viewpoint, the relational approach is currently
more generic than graph transformation since the former provides a framework to
automatically keep the related source and target models synchronized. Graph trans-
formation theory needs to be extended with the notions of consistency contracts and
traceability links to support such incremental updates. Consistency contracts can be
described declaratively in OCL while the graph transformation approach described
in Sect. 3.2 can be used to establish and maintain the contracts [432]. Initial ideas on
graph transformation with incremental updates are discussed by Varró [441].

On the other hand, from a model analysis viewpoint, graph transformation has
clear advantages. In such cases, the transformation should describe either a complex
computation (e.g., flattening hierarchical statecharts’ concurrent regions into flat stat-
echarts) or powerful abstractions need to be performed to avoid state space explosion
(thus the descriptive power of source and target languages is very different). Declar-
ative (relational) approaches have not yet proved their practical feasibility in these
areas.

3 Graph Transformations for Vertical Model Transformation

Vertical transformations are transformations towards PSMs and towards a specific
model implementation. Generally, vertical transformations may use the same tech-
niques as horizontal transformations just for a different purpose. Only some aspects,
e.g., code generation, require additional concepts.

3.1 The Fujaba Approach

Our approach uses the Fujaba project and tool set developed at the University of
Paderborn [475]. Fujaba is a graph-based tool which uses the Unified Modeling Lan-
guage UML for design and realization of software projects. Fujaba uses UML class
diagrams for the specification of graph schemata. As mentioned earlier, it uses a
combination of activity diagrams and collaboration diagrams, so-called story dia-
grams for the specification of operational behavior. The semantics of story diagrams
is based on programmed graph rewriting rules [476]. The story diagrams offer many
powerful constructs of graph transformation like multi-objects, non-injective match-
ing, NACs, etc., to create a powerful language which is usable for modeling even
complex problems in an elegant way. The operational behavior modeled with such
story diagrams can then be tested using the graph based object browser DOBS (Dy-
namic Object Browsing System, see Fig. 3 below) which is part of the Fujaba Tool
Suite, cf. [143].

In contrast to other graph-based tools (cf. [418, 177]), Fujaba does not rely on
proprietary runtime environments. Instead, Fujaba generates standard Java source
code that is easily integrated with other Java program parts and that runs in a common
Java runtime environment. The Fujaba code generation for graph rewrite rules uses
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a sophisticated query optimizer that translates the LHS of a rule into nested search
loops, cf. [474, 476]. In general this results in efficient rule execution. Altogether, this
enables the use of graph-based concepts in all kinds of Java applications. Support for
other target languages is planned, too.

Metamodel

To illustrate our approach, a small case study on a statechart environment is used.
This case study was first introduced in [144]. The Fujaba approach is used to describe
how model transformation to the PSM and operational semantics of the PSM can be
done.

The statechart case study is used to show Fujabas abilities to model a visual lan-
guage. Since the Fujaba approach uses typed graphs, one needs a graph schema to
model graph transformations. Such graph schemata are modeled using UML class di-
agrams in Fujaba. Note that the usage of MOF would be applicable here, too. Figure
2 shows such a graph schema/metamodel/class diagram for the statechart environ-
ment.

From such a class diagram, Fujaba generates Java classes for the different kinds
of objects, their attributes and their relationships. From the developer’s point of view,
Fujaba’s implementation of relationships turns Java object structures into graphs with
bi-directional edges. Provided with a class diagram, our dynamic object browser
DOBS may already be used as a simple editor for models/object diagrams/graphs,
see Fig. 3. DOBS shows the abstract syntax of our model.

Fig. 2. Class diagram for statechart metamodel



100 Lars Grunske et al.

Fig. 3. Abstract syntax in DOBS

Model Transformations to PSM

Based on the metamodel, model transformations are discussed in the sense of Model-
Driven-Architecture (MDA). As an example of a simple model transformation the
flattening of complex statecharts to plain state machines is specified. This flatten-
ing is discussed first, since this allows us to simplify the specification of operation
semantics and of consistency checks later on.

Flattening of statecharts with or-states deals with the replacement of transitions
targeting or-states, and with the replacement of transitions leaving or-states and with
the removal of or-states that have no more transitions attached.
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]failure[ ]success[

elements
statechart StateChart:scthis

«create» target
true==init

State:inner

«destroy»
target

Transition:aToOr

superState

OrState:or

StateChartFlattener::transitionToInner (): Boolean

false true

Fig. 4. Replacing transitions targeting or-states

Figure 4 specifies the replacement of transitions targeting or-states. Such transi-
tions are simply re-targeted to the initial state of the statechart embedded within the
or-state. Note that Fig. 4 employs a new (functional) class StateChartFlattener that
has a statechart reference to StateChart objects. The graph transformation in Fig. 4
matches a statechart object sc containing an or-state or that is targeted by a transi-
tion aToOr. In addition, the graph transformation identifies a sub-state object inner,
where the init attribute has value true, i.e., the initial sub-state. As indicated by the
�destroy� and �create� markers, the graph transformation of Fig. 4 removes the
target link connecting transition aToOR and or-state or and adds a new target link
leading to sub-state inner. If this rule is applied as often as possible, all transitions
leading to or-states are redirected to the corresponding initial states.

In Fig. 2 class OrState inherits from class State. This means that when we need a
node of type State, a node of type OrState does the job as well (substitutability). For
our graph rewrite rule this means that node inner may match either a plain state or
an or-state. Thus, our graph transformation works for nested or-states as well.
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]end[

true

]each time[

]success[

source
State:inner

orToA.getLabel()==label

Transition:another
superState

or

]failure[elements

statechartStateChart:sc

«destroy»
target

«destroy»
source

«destroy»

Transition:orToA

this

State:aOrState:or false

«create»
target

«create»
source

«create»

orToA.getAction():=action
orToA.getLabel():=label

Transition:innerToA

}maybe inner == a{

inner a

StateChartFlattener::transitionFromInner (): Boolean

Fig. 5. Replacing transitions leaving or-states

The graph transformation of Fig. 5 replaces transitions leaving or-states. This is
done in three steps. The first graph rewrite rule identifies a transition orToA with a
source link to an or-state or and destroys it. If this rule has been applied success-
fully, the second graph rewrite rule identifies inner states of or that do not already
have a leaving transition with the same label. Story diagrams use crossed out ele-
ments to specify negative application conditions. The second graph rewrite rule has
two stacked shapes. Such a rule is called a for-each activity. For-each activities are
iteratively applied as long as new matches are found. Due to the each time transi-
tion in Fig. 5, each time when the second graph rewrite rule identifies an inner state
without an appropriate leaving transition, the third graph rewrite rule is executed.
The negative node another prevents the creation of a new transition if the inner state
already has such a transition. This implements the priority rules of UML statecharts.
The third graph rewrite rule creates a new transition leaving the corresponding inner
state, targeting the same state a as the old transition. In addition, the transition label
and the transition action are transferred.

In general story diagrams employ isomorphic rule matching only. However, the
maybe inner==a clause of the third graph rewrite rule allows nodes inner and a to
be matched on the same host graph object. This handles self-transitions.

The graph rewrite rule of Fig. 6 employs two negative nodes ensuring that the
considered or-state has no outgoing and no incoming transition. For simplicity, a
third negative application condition ensures that the considered or-state is not em-
bedded in another or-state. This means that we handle nested or-states outside in. If
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all conditions hold, the or-state is destroyed and all its sub-states are added to the
statechart sc. In addition, the init flag of the or-state is transferred to its initial sub-
state. Thus, if the or-state was a usual state, its initial sub-state becomes a usual state,
too. If the or-state was the initial state of the whole statechart, its initial sub-state
becomes the new initial state of the statechart.

]success[ ]failure[

superState

superState

elements

statechart

sourcetarget

OrState:outer

Transition:incoming
«destroy»

OrState:or

StateChart:sc

Transition:outgoing

this

or.isInit():=init
true==init

State:inner

StateChartFlattener::removeOuter (): Boolean

true false

Fig. 6. Removing obsolete or-states

In story diagrams, the graph grammar-like application of a set of rules as long
as possible needs to be programmed explicitly. This may be done as shown in the
(pseudo) graph transformation of Fig. 7, which employs a Boolean constraint calling
our three model transformations. If one of the above transformations is applied (and
returns true), we follow the success transition, and the Boolean constraint is evalu-
ated, again. If no transformation succeeds, the transformation terminates. Thus, the
application of transformation flattenStateChart removes all (even nested) or-states
and results in a simple state machine.

Note that the Boolean or operators connecting our three basic model transfor-
mations use left precedence and short-circuit evaluation. This means that transition-
FromInner has higher priority than transitionToInner which again has higher priority
than removeOuter. Thus, the proposed way of applying a set of graph transformation
implies precedences on the transformation rules. Relying on these precedences, the
negative nodes of Fig. 6 could have been omitted.
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]failure[

]success[

}transitionFromInner() || transitionToInner() || removeOuter(){

StateChartFlattener::flattenStateChart (): Void

Fig. 7. Employing the transformation rules as long as possible

Operational Semantics of PSM

This chapter provides the operational semantics for our statecharts. Of course we
could interpret statecharts with (nested) or-states directly. However, this would need
some more complicated rules. Thus, to facilitate the example this chapter assumes
that the state chart is first flattened and all or-states are properly replaced. Then, the
statechart may be executed using the graph transformation of Fig. 8.

«create» current

targetsource

«destroy»current this

State:current

1: System.out.println (a.getAction())

2: System.out.println (next.getDoAction())
}maybe current == next{

event==label

Transition:a
State:next

FSMSimulator::handleEvent (event: String): Void

Fig. 8. Firing transitions

For handling events, we employ an object of type FSMSimulator. This simulator
object has a current edge marking the currently active state. If method handleEvent is
called, it tries to identify an outgoing transition a with the label provided in parameter
event. The maybe current==next clause allows us to handle self transitions. If such
a transition exists, the current edge is redirected to the target state of the transition.
In addition, the transition action and the do-action of the target state are executed.
For simplicity reasons, this is simulated using System.out.println. Alternatively, the
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actions might employ Java syntax and a Java interpreter like the bean shell [301]
could have been used to actually execute the actions.

3.2 Comparison with other Related Approaches

Since vertical transformations and horizontal transformations are just transforma-
tions for different purposes, the comparison given in the following chapter holds
here, too. However, there are some specific techniques in current CASE tools related
to vertical transformations.

Usually, platform specific information is added to a PIM with the help of stereo-
types. For example, a platform independent server class might be stereotyped to use
CORBA as its underlying communication mechanism. Such a stereotype parameter-
izes the code generator of the underlying CASE tool to generate platform specific
stub classes and communication means. Similarly, a stereotype might specify differ-
ent priority options within a statechart. Again, this parameterizes the code generator
of the underlying CASE tool. In some CASE tools, stereotypes may be exploited
in template-based code generators. This means the user may provide a meaning for
new stereotypes by editing specific code generation templates. Alltogether, we do not
consider such stereotype mechanisms as actual model transformations. For example,
they seem inappropriate for statechart flattening or other more complex transforma-
tion tasks.

The only notable mechanism for model transformation provided by CASE tools
so far is the design pattern expansion mechanism provided, for example, by Rational
ROSE XDE [215] and Artisan. This is a kind of macro mechanism allowing us to
instantiate and adapt multiple design elements with a single pattern expansion com-
mand. In addition, methods generated by such a pattern expansion may already have
an implementation that is adapted to the specific pattern occurrence during pattern
expansion. Actually, this is a helpful mechanism for vertical model transformations.
However, in graph grammar terms this is a specific node replacement system. Com-
pared to a full graph rewriting system, such node replacement systems provide very
limited modeling means. While both kinds of graph grammars in principle generate
the same classes of graphs, our experiences have shown that comfortable modeling
of complex transformations requires complex object patterns in the LHS, various
kinds of application conditions and control structures for the combination of simple
rules to complex transformation algorithms.

While the design pattern expansion mechanism provided by some CASE tools
is not rich enough from the point of view of graph grammars, the design pattern
expansion mechanism in these tools has the advantage that the rules are written in
an extended UML notation, i.e., at the level of concrete syntax. Story diagrams are a
general modeling language. Therefore, story diagram rules work on the metamodel
level, i.e., at the level of abstract syntax. For end users, dealing with the internal
metamodel of some tool is a major obstacle. To facilitate the writing of story diagram
rules for such end users we plan to allow concrete syntax in story diagram rules, too.

The example transformations, shown in this chapter, utilize many of the more
sophisticated features of story diagrams, e.g., programmed graph rewriting, method
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invocations, for-each activities, multi-objects, maybe clauses, negative application
conditions, path expressions, etc. Similar language elements are provided by Progres
graph transformations [177] only. In our experience, such sophisticated modeling
constructs are mandatory for the specification of complex functionality as required
for CASE tools.

The MoTMoT approach [129, 376] also uses story diagrams to specify model
transformations. But unlike Fujaba, MoTMoT does not offer an editor to create story
diagrams, but provides a UML 1.4 profile which uses annotated UML class diagrams
and annotated UML activity diagrams to model story diagrams. This way, story dia-
grams can be drawn with every UML 1.4 compliant editor, like Together, MagicDraw
or Poseidon.

The MOLA language [242] developed at the University of Latvia uses very sim-
ilar concepts as used in story diagrams. MOLA also uses typed graphs and pro-
grammed graph transformations. But until now, MOLA has remained only a lan-
guage specification and an editor. Interpreter or compiler support is still missing.

The GReAT tool [243] uses similar transformation rules. To structure more rules,
GReAT makes use of data flow diagrams rather that control flow diagrams used in
Fujaba.

The VIATRA tool [78] uses a combination of graph transformation rules (to de-
scribe structural modifications) and abstract state machines [44] (used as control
structures to arrange elementary rules into complex transformations) and it is inte-
grated into the Eclipse environment.

ATOM3 [81] is a multi-paradigm visual modeling framework also using graph
transformation for defining the semantics of individual modeling languages and
transformations. In addition to discrete modeling languages (like Petri nets, state-
charts, etc.) the tool also aims at integrating domains of continuous models (as widely
used control theory).

4 Graph Transformations for Horizontal Model Transformation

The vertical model transformations from the previous section are used to implement
a refinement (or its inverse abstraction) relationship. The input and output models
conform to metamodels that represent system properties at different levels of abstrac-
tion. In contrast, horizontal model transformations are used to implement mappings
between models at the same level of abstraction.

In some cases, the output model is an in-place updated version of the input model.
Using refactorings as an example, it will be illustrated that one implements such
transformations by rephrasing a system in the same language: a transformation is
defined on only one metamodel that serves as input and output.

In other cases, the output models are constructed from the input models by trans-
lating their information to other modeling languages. In this section, it will be shown
that such horizontal translations are defined on a different metamodel for input and
output. The generative programming community also recognizes the distinction be-
tween horizontal and vertical transformations that are defined either within the same
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metamodel or across different metamodels [79]. For a brief classification, we refer to
the introduction of Visser’s survey of rewriting strategies in program transformation
systems [446].

4.1 The Fujaba Approach

Refactoring as an Example of Horizontal Rephrasing

Refactorings are transformations that change the structure of a program while main-
taining its external behavior [131]. Other examples of horizontal rephrasings are nor-
malization and optimizations. In an MDE context one implements such program
transformations following the same approach: the program is parsed to a model
which is then transformed horizontally while preserving certain properties.

When implementing refactorings, one first has to decide what properties char-
acterize external program behavior. From this, one has to agree upon a metamodel
on which the transformations and properties can be formalized without navigating
through irrelevant details. In order to express the transformations, one finally needs
a language that assists reasoning about the correctness of a refactoring implementa-
tion, again while hiding unimportant details. In [290], it is shown that graph rewriting
is a promising formalism for this.

A typical example of a graph rewriting rule implementing a refactoring is given
in Fig. 9. It represents the Pull Up Method refactoring expressed as a Fujaba SDM
specification. The metamodel used to express the refactoring, is Fujaba’s internal
metamodel. The diagram shows how method, which is implemented in container, is
moved to superclass. By expressing the refactoring on Fujaba’s internal metamodel,

]success[

«create»
methods superclass

subclass

UMLClass:superclass

target)UMLMethod(:=method UMLGeneralization:stub

UMLClass:container

«destroy»
methods

PullUpMethod::execute (target: ASGElement): Void

Fig. 9. Pull Up Method refactoring expressed using Fujaba’s Story-Driven Modeling (SDM)
language

the code generated from this graph rewriting can be called from a Fujaba plugin for
refactoring UML class diagrams [433].
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Refactorings are not the only applications of horizontal rephrasing with the target
of improving an existing infrastructure. Similar approaches exist for the restructuring
of software architectures: for example, Fahmy and Holt [119] use graphs to repre-
sent software architectures and conditional graph rewriting rules to improve quality
attributes of a software architecture.

Horizontal Translation

To be able to focus on different aspects of a program, software engineers usually
employ different views of the software. A typical example, which was introduced
in [382], considers syntax trees and flow diagrams. Both diagrams contain the same
information, but allow one to extract a certain type of information more easily. For
example, a syntax tree representation of a method is excellent for specifying low-
level code transformations, while flow diagrams help the programmer to get a bet-
ter understanding of parts of the code, and the calculation of certain properties like
cyclomatic complexity. Since the same program is represented in different model-
ing languages, horizontal translations are required for maintaining the consistency
between the models. Pair grammars and triple graph grammars offer a declarative
solution to implement this.

For the example, a triple graph grammar rule is given in Fig. 10. It relates the
addition of an assignment construction to an abstract syntax tree to that of a control
flow diagram. This rule is triggered whenever the syntax tree is adapted and updates
the control flow graph. Apart from this forward rule, two other rules are part of the
triple rule. The backward rule specifies how the addition of the assignment in the
flow graph must update the syntax graph. The last rule analyzes and updates the cor-
respondence graph when both structures evolve. Another example relates a program
structure graph to an architectural description of a program [76]. Different graph
rewriting environments like PROGRES [383] and Fujaba support the specification
of triple graph grammars.

4.2 Comparison with other Related Approaches

Hypergraph Transformation Approaches

Next to using simple, typed graphs as a formalism for specifying horizontal transfor-
mations, other approaches can use more advanced structures like hypergraphs [181]
and hypergraph grammars. A typical use of these structures is described in [207],
where a network is represented as a hypergraph. In such a network, the basic entities
like servers and clients are modeled as hyperedges, while the nodes represent com-
munication between these entities. The reconfiguration of such a network architec-
ture is then described as a set of hyperedge replacement rules. The main advantages
of using hypergraphs are the improved flexibility in modeling, and the possibility of
creating hierarchical graphs. Hierarchical graph transformation [91] can then be used
to specify high-level translations or rephrasings as described in [179].
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Fig. 10. Forward triple graph rule

Metamodel Design

Fujaba’s metamodel is similar to the UML metamodel. In [155], it is shown which
key shortcomings of the UML metamodel need to be resolved for expressing source-
consistent refactorings. By extending the UML 1.4 metamodel with constructs for
modeling method bodies in a language-neutral way, one can reuse (parts of) refac-
toring implementations (and related bad code smell specifications) for different OO
languages.

Based on a list of criteria for UML refactoring (like simplicity, backward compat-
ibility with previous UML versions, the ability to integrate with code smell detectors
and maintain the consistency with the source code), the action semantics package of
UML 1.5 was found inadequate as a basis for expressing UML refactorings. There-
fore, the authors proposed a refactoring-oriented set of extensions to the UML 1.4
metamodel. Research on the FAMIX metamodel [83] indicated that the notion of ac-
cess, call and updatebehavior had to be augmented with the notions of type-casting
and nested scopes containing local variables.

In 2001, researchers from the reengineering community [96] agreed on the
Dagstuhl Middle Metamodel [270] for representing software at a medium level of
abstraction and on Datrix [209] for a low-level representation. It appears to be un-
feasible to design a metamodel that satisfies the needs of both low-level refactoring
tools and high-level visualization tools. Therefore, it may be more promising to in-
vestigate how the consistency between models in different modeling languages can
be maintained. Source code refactorings could be implemented on full-fledged ab-
stract syntax graphs while visualization tools could be implemented using minimal-
istic metamodels for class diagrams, statecharts, sequence diagrams, etc. Changes
resulting from refactoring applications on the concrete models could be propagated
to the visualization models by triggering model translations.
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Consistency Through Distributed Graph Transformation

Bottoni et al. use distributed graph rewriting to decompose a refactoring on a re-
dundant metamodel into several smaller units [139]. This technique is useful in a
UML context where structural program information is redundantly stored in both the
core package and the class diagram package of the metamodel. By coordinating the
distributed rules, one can maintain the consistency between all diagrams.

5 Graph Grammars for Model Analysis and Verification

Although graph grammars provide a visual yet formal language for capturing a wide
range of model transformations with automated code generation and tool support,
automation and formality do not alone guarantee correctness as the specifications of
model transformations can also be erroneous. This problem can be severe since, if
some bugs are detected during model-driven development in a PSM or in the target
program, the designers have to be reassured that the automated model transforma-
tions do not introduce new flaws into the system model. As a consequence, one has to
prove precisely (and automatically, if possible) that a model transformation is correct
[439].

5.1 Correctness Criteria for Transformations

The most elementary requirements of a model transformation are syntactic. The min-
imal requirement is to assure syntactic correctness, i.e., to guarantee that the gener-
ated model is a syntactically well–formed instance of the target language. An addi-
tional requirement (called syntactic completeness) is to completely cover the source
language by transformation rules, i.e., to prove that there exists a corresponding el-
ement in the target model for each construct in the source language (and we did not
forget about any situations when specifying the transformation rules).

However, in order to assure a higher quality of model transformations, at least the
following semantic requirements should be verified for a model transformation. First
one must guarantee that a transformation is terminating and confluent (thus it yields
a unique result). As model transformations may also define a projection from the
source language to the target language, semantic equivalence between models cannot
always be proved. Instead we aim to prove the property preservation of a transfor-
mation for certain (transformation specific) correctness properties. For instance, in
a statechart-to-code transformation, one may prescribe the natural criterion for cor-
rectness that each state configuration that is reachable from the initial configuration
in a statechart model should be reachable in the target code as well.

5.2 CheckVML: A Tool for Model Checking Graph Grammars

The main idea of the CheckVML approach [437, 438, 377, 362] is to exploit off-the-
shelf model checker tools like SPIN [211] for the verification of graph grammars.
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More specifically, it translates a graph transformation system parameterized with a
type graph and an initial graph (via an abstract transition system representation) into
its Promela equivalent to carry out the formal analysis in SPIN. Furthermore, graph
properties that capture the requirements for the system visually are also translated
into equivalent temporal logic formulae.

Graph and Rule Model.

CheckVML uses directed, typed and attributed graphs as model representation. In-
heritance between node types is also supported.

Concerning the rule application strategy, it prescribes that a matching in the host
graph should be an injective occurrence of the LHS (and NAC) graphs. Furthermore,
all dangling edges are implicitly removed when deleting a node. Arbitrary creation
and deletion of edges are allowed while there is an a priori upper bound for the
number of nodes (of a certain type) potentially created during a verification run,
which is passed as a parameter to the translator.

The Model Checking Problem

The model checking problem is to automatically decide whether a certain correctness
property holds in a given system by systematically traversing all enabled transitions
in all states (thus all possible execution paths) of the system. The correctness prop-
erties are frequently formalized as LTL formulas.

Traditional model checkers are based on so-called (state-)transition systems
(TSs), where the structure of a state consists of a subset of a finite universe of propo-
sitions. This determines the storage structures used (usually Binary Decision Dia-
grams or a variant thereof), the logic used to express properties (propositional logic
extended with temporal operators, usually LTL or CTL) and the model checking
algorithms (automata-based or tableau-based).

From Graph Grammars to Transition Systems: An Overview

In graph grammars, a state is constituted by a graph, while a transition means the
application of a rule for a certain matching of the LHS in such a graph. Traversing all
enabled transitions then means applying all rules on all possible matchings. During
this process, it is important to realize whether a certain state has been investigated
before; therefore the model checker has to store all the graphs that it has encountered.

Since graph transformation is a meta-level specification paradigm (i.e., it defines
how each instance of a type graph should behave), while the transition system for-
malism of Promela is a model-level specification language (i.e., a Promela model
describes how a specific model should behave), the main challenge in this approach
is rule instantiation, i.e., to generate one Promela transition for all the potential ap-
plication of a graph transformation rule in a preprocessing phase at compile time.
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State Variables and Initialization

A model element (object, link or attribute) is considered to be dynamic if there is at
least one rule that potentially modifies (creates, destroys, updates) the element. The
encoding of dynamic model elements into state variables is driven by the metamodel
(type graph). A one-dimensional Boolean state variable array (a unary relation sym-
bol) is defined for each dynamic node type; and a two-dimensional Boolean state
variable array (a binary relation symbol) for each edge type.

In traditional model checker tools, the dimension of each array and all the enu-
meration types must be restricted to be finite at compile time. For the corresponding
graph grammar, this restriction implies that there exists an a priori upper bound for
the number of nodes in the model for each node type given explicitly by the user of
CheckVML. In this respect, we suppose that when a new node is to be created it is
only activated from the bounded “pool” of currently passive objects (deletion means
passivation, naturally), and the same applies to the interpretation of links.

Note that the restriction for the existence of a priori upper bounds is a direct
consequence of using SPIN, which prescribes that the domains of all state variables
have to be a priori finite. Fortunately, one can insert special assert statements in the
Promela code which check if these limits were exceeded during verification, and then
the user can increase the corresponding upper bound before the next compilation
and verification run. Alternatively, one can switch to another model checker (like
dSPIN [221]) that supports object creation without restrictions, which needs further
investigations.

In general terms, the initial configuration of the application model is projected
into the initial state of the TS. In this respect, exactly those locations of state variable
arrays evaluate to true in the initial state for which the related model elements exist
in the initial configuration.

Translation of Rules.

Potential applications of the graph transformation rules that specify the dynamic
behavior of the style are encoded into transitions (guarded commands) of the corre-
sponding TS.

Since the encoding only introduces state variables for dynamic model elements,
we also have to eliminate conditions that refer to the static parts of the model. For that
reason, the generation process of transitions is driven by a graph pattern matching
engine, which collects all the matching instances of the static parts of the precon-
ditions of a rule. If the guard of a certain guarded command can never be satisfied
due to the failure of pattern matching in the static structure then this transition is not
generated at all in the target TS.

Although this compile-time preprocessing can be time-consuming, since all the
potential matches of a rule have to be encountered, we only have to traverse a rela-
tively small part of the state space for this step as graph transformation rules define
local modifications to the system state; thus it is typically negligible when compared
with the time required for traversing the entire state space during model checking.
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Properties To Be Verified.

The requirements for system under design are most typically captured by safety and
reachability properties. A safety property defines a desired property that should al-
ways hold on every execution path or (equivalently) an undesired situation which
should never hold on any execution path. A reachability property describes, on the
contrary, a desired situation which should be reached along at least one execution
path. From a verification point of view, safety and reachability properties are dual:
the refutation of a safety property is a counter-example which satisfies the reachabil-
ity property obtained as the negation of the safety property. On the other hand, if a
safety property holds (or a reachability property is refuted) the model checker has to
traverse the entire state space.

A safety or reachability property can be interpreted as a special graph pattern
(called property graph in the sequel) which immediately terminates the verification
process if it is matched successfully. It is shown in [361] that the properties express-
ible in this way are equivalent to the ∃¬∃ fragment of (∀-free) first-order logic with
binary predicates.

The CheckVML Tool: Pros and Contras

The potential benefits of the CheckVML tool are the following:

(1) The tool considers typed and attributed graphs, which fits well with the meta-
modeling philosophy of UML and other modeling languages.

(2) The size of the state vector depends only on the dynamic model elements (i.e.,
elements that can be altered by at least one graph transformation rule) while
immutable static parts of a model are not stored in the state vector. This is a
typical case for data flow-like systems (e.g., data flow networks, Petri nets, etc.).

(3) CheckVML can be easily adapted to various back-end model checker tools (like
SAL [37], Murφ [1]) due to the usage of XML input and output formats.

The essential disadvantage of the approach is that dynamic model elements (that
are not restricted by static constraints) easily blow up both the verification model and
state space; moreover, symmetries in graphs can be handled only for limited cases.

Verification Experiments

Concerning the practical usefulness of the approach, two questions might immedi-
ately arise: (i) what is the size of the models that can be verified, and (ii) how does
one obtain meaningful initial models?

To answer the first question, detailed experiments have been carried out in [362]
where two main roads of model checking graph transformations (namely, GROOVE
[360] vs. CheckVML) were compared on various case studies having essentially dif-
ferent characteristics concerning the dynamic and symmetric nature of the problem.

For instance, SPIN (CheckVML) managed to verify the graph transformation
version of dining philosophers problem with ten philosophers – which is a relatively
good problem size concerning (i) the use of explicit state model checkers and (ii) the
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automatic generation of the Promela code without further manual optimizations. On
the other hand, verification failed much sooner in the case of inherently dynamic and
symmetric problems (like the mutual exclusion example of [205]).

These experiments also revealed that (i) the space consumption of these tools
were comparable, (ii) SPIN (CheckVML) had a clear advantage concerning the time
required for verification of problems of the same size, but (iii) GROOVE were able
to handle problems with a larger dimension due to its sophisticated algorithms for
graph isomorphism checks.

Now, to answer the second question based upon these experiments, it seems un-
realistic that correctness properties could be verified on a large initial graph (of a
complex system model). But the practical use of model checkers is most frequently
to automatically find conceptual flaws in the specification (i.e., refutation instead of
verification), for which one can use much smaller initial models. Furthermore, the
execution traces retrieved during the verification of reachability properties can im-
mediately be used as (automatically derived) test cases for a more complex system.
The exploitation of these issues is a direction of future research.

5.3 Reachability Analysis of Flattened Statecharts

Based upon the operational semantics rule of statecharts (see Fig. 8), a reachability
analysis is carried out to decide whether all states of a flattened statechart are reach-
able or not. For this purpose, we first translate a sample flattened statechart model
(consisting of states s1, s2 and s3 and transitions t1: s1->s2, t2: s2->s3
and t3: s1->s3) and the rule into a corresponding TS.

Since there is a single dynamic element in the class diagram (namely, the
current edge type), the TS encoding of our model contains only a single state
variable array. All other static elements are eliminated by CheckVML in the pre-
processing phase since they will never change during the verification (model execu-
tion).

/* upper bound for the domain of variables */
#define MAXFSM 1
#define MAXSTATE 3
/* instances (individuals) */
#define a1 0 #define s1 0 #define s2 1 #define s3 2

/* state variable: one- or two-dimensional arrays */
/* for dynamic node, edges, and attributes */
bool current[MAXFSM][MAXSTATE];

/* Initialization of state variables */ init{
/* All locations in the state variable array */
/* are set properly */
current[a1][s1] = true; current[a1][s2] = false;
current[a1][s3] = false;

}
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All potential matches of the graph transformation rule of the statechart semantics
are collected also at compile time and translated into the following guarded com-
mands (which are, essentially, a pair of guards and elementary update operations).
Below we present the TS equivalent of one potential matching, namely, for transition
t1.

/* transition: Boolean guard -> update1; update2; */

:: atomic {
fsm[a1] && current[a1][s1] && state[s1] && source[t1][s1] &&
transition[t1] && target[t1][s2] && state[s2] ->
current[a1][s1] = false; current[a1][s2] = true;

}

Static parts of the model and dead guarded commands with a guard always evalu-
ated to false because some static parts of the model are removed this time as well. As
a result, we end up with the following very compact representation of our statechart
model.

/* non-deterministic selection between transitions; */
/* executed as an atomic step; */
do :: atomic{ current[a1][s1] ->

current[a1][s1] = false; current[a1][s2] = true; }
:: atomic{ current[a1][s2] ->

current[a1][s2] = false; current[a1][s3] = true; }
:: atomic{ current[a1][s1] ->

current[a1][s1] = false; current[a1][s3] = true; }
od

The required reachability property stating that each state of the statecharts should
be reachable can be expressed by the graph pattern of Fig. 11. The parametric prop-
erty graph in the upper part (expressing that a state S never becomes current, which
is an undesired situation) is first instantiated to enumerate all potential matchings in
the instance graph. Then the corresponding LTL formula for the safety property can
be easily derived, which simply collects all these matchings into a disjunctive for-
mula with global (G) temporal quantifiers (which prescribes that the formula should
hold for all states on all execution paths).

When running the model checker, a counter-example for the property of Fig. 11
shows an execution of the flattened statechart where it is proved that all states of the
statechart become reachable.

5.4 Comparison with other Related Approaches

The theoretical basics of verifying graph transformation systems by model checking
have been studied thoroughly by Heckel et al. in [205, 204] (and subsequent papers).
The authors propose that graphs can be interpreted as states and rule applications as
transitions in a TS. This idea is adopted more or less in all existing model checking
approaches of graph grammars.
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/* Definitions for each match of the property pattern */
#define match1 (fsm[a] && state[s1] && NOT current[a][s1])
#define match2 (fsm[a] && state[s2] && NOT current[a][s2])
#define match3 (fsm[a] && state[s3] && NOT current[a][s3])

/* G (p): globally p, i.e. the property p holds */
/* for all states on all execution paths */
G (match1) || G (match2) || G (match3)

Fig. 11. The reachability property of states

The main current alternative for CheckVML is provided by the GROOVE frame-
work [360], which uses the core concepts of graphs and graph transformations all
the way through during model checking (instead of translating them into existing
model checking tools). This means that states are explicitly represented and stored
as graphs, and transitions as applications of graph transformation rules; moreover,
properties to be checked should be specified in a graph-based logic, and graph spe-
cific, model checking algorithms should be applied. A more detailed comparison
between GROOVE and CheckVML can be found in [362].

A theoretical framework by Baldan and König [26] aims at analyzing a special
class of hypergraph rewriting systems by a static analysis technique based on fold-
ings and unfoldings of a special class of Petri nets. This framework is able to verify
infinite state systems by calculating a representative finite complete prefix. Unfortu-
nately, no supporting tools have been reported in the literature.

Dotti et al. use object-based graph grammars [88] for modeling OO systems
and define a translation into SPIN to carry out model checking. The main differ-
ence (in contrast to CheckVML) is that the authors allow a restricted structure for
graph transformation rules that is tailored to model message calls in OO systems.
Therefore, CheckVML is more general from a pure graph transformation perspec-
tive (i.e., any kind of rules are allowed). However, the framework of [88] relies on
higher-level SPIN/Promela constructs (processes and channels), which might result
in better run-time performance.

6 Conclusions and Future Work

In this chapter we used graph transformation to specify and apply model transfor-
mations in the context of model-driven software engineering. For this reason, we
presented the theoretical background of graphs and graph transformations. There-
after, we demonstrated the practical feasibility of graph transformations for horizon-
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tal (PIM-to-PIM) and vertical (PIM-to-PSM) model transformations and the verifi-
cation of these model transformations. For each domain typical case studies were
introduced and the existing tool support was described. Based on these examples, we
believe that graph rewriting systems are well suited to the context of model trans-
formations. Especially, pair grammars and triple graph grammars can become the
dominant formalism for automated PIM-to-PIM and PIM-to-PSM transformations.

Throughout the examples, we used the syntax of Fujaba’s graph rewriting lan-
guage which is very close to standard UML activity diagrams and object diagrams.
In order to realize the MDA vision of platform independence, a recent investigation
demonstrated how this syntax could be completely aligned with UML stereotypes
and MOF [376]. The result of this work makes it possible to specify model trans-
formations in one UML tool and deploy them on the repository of another UML
tool.

To continue this movement toward standardization and cross-fertilization among
formalisms and tools, one may investigate how OCL can be integrated with the stan-
dardized graph transformation language to support textual constraint specifications
embedded in graph rewriting rules. This may result in a concrete proposal for sup-
porting queries, views and transformations on models based on the synergies be-
tween graph transformation and UML/MOF.
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Summary. The notions of “platform” and “platform model” have a fundamental role to play
in the MDA vision of software engineering, since they form the basis for distinguishing be-
tween Platform Independent Models (PIMs) and Platform Specific Models (PSMs) and for
defining the input that allows transformation tools to map PIMs into PSMs. However, the de
facto notions of platform and platform model that prevail in the MDA community today are
overly narrow and only vaguely defined. In the MDA literature, the basic capability that an
artifact is required to have to be characterized as a platform is the ability to support the execu-
tion of a software application. Beyond that, there is no consensus on what features a platform
should possess or what form platform models should take. One school of thought holds that a
platform model is essentially a Domain Specific Language (DSL) and that MDA technology is
essentially about the definition and use of DSLs, but this fails to capture some important prop-
erties that are usually associated with the notion of platform. In this chapter we explain why
this is the case and discuss what information a generalized platform notion should encapsulate
and what form a model of such a platform should take. We present a notion of “platform”
based on four minimalistic, orthogonal elements: Language, predefined types, predefined in-
stances and patterns, and explain how this notion can be applied to contemporary software
platforms such as Java, J2EE and .NET.

1 Introduction

Model-driven development (MDD) is based on the principle of separating the de-
scription of an application’s abstract properties and logic from a description of its
platform specific implementation, and of automating the transformation of the for-
mer into the latter using advanced model transformation tools (MTTs). The most
mature formulation of this vision at present is the OMG’s “Model-Driven Architec-
ture” (MDA) which refers to a high-level description of an application as a Platform
Independent Model (PIM) and a more concrete implementation-oriented descrip-
tion as a Platform Specific Model (PSM). Figure 1, taken from the OMG’s MDA
Guide [317], provides a “suggestive” picture of the MDA vision by illustrating how
PIMs are automatically transformed into PSMs with the help of additional input de-
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scribing the properties and services offered by the target “platform”. While this is
undoubtedly a very powerful and elegant metaphor for software development, there
are some significant issues which need to be sorted before this vision becomes a
reality in mainstream software engineering. Chief among them is the question of
what precisely a platform is and what a platform model looks like. Of the three fun-
damental ingredients of MDA referred to in Fig. 1, “model”, “transformation” and
“platform”, “platform” is currently the vaguest and least well defined. This may be
because most of the research on MDA to date has focused on the “transformation”
challenge (p. 19, p. 91 of this book) [387]. There are few explicit definitions of the
notion of “platform” or platform model in the MDA literature and those that do exist
are rather vague and high level. However, without a precise and concrete definition of
what a platform is and what a platform model looks like it is impossible to formulate
a precise notion of PIMs, PSMs and the additional “input” depicted in Fig. 1.

Platform

Model(s)

…

Fig. 1. Core principle of MDA

The most explicit definition of the concept of a platform in the MDA context is
probably to be found in the MDA Guide [317], which states:

“A platform is a set of subsystems and technologies that provide a coherent
set of functionality through interfaces and specified usage patterns, which
any application supported by that platform can use without concern for the
details of how the functionality provided by the platform is implemented.”

Although this is a very high-level definition which leaves a lot of scope for inter-
pretation, it does make it clear that a platform is intended to be viewed as a vehicle
for the execution of a software application. This is reinforced by the “flagship” text
that accompanies the MDA logo on the OMG’s website:3

“Platform-independent applications built using MDA and associated stan-
dards can be realized on a range of open and proprietary platforms, includ-
ing CORBA, J2EE, .NET and Web Services or other Web-based platforms.”

3 http://www.omg.org/mda/
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This is no accident of course, because the word “platform” is generally used in
the IT industry to refer to machines or systems that are built to support the execution
of software applications in their end-user environment. In addition to the platforms
already mentioned, examples include hardware such as the Intel Pentium or Power
PC processors, operating systems such as Linux or Windows, and virtual machines
such as the Java Virtual Machine and the .NET Common Language Runtime. If one
views a platform as an execution infrastructure, it seems self-evident that a “platform
model” is a “model of an execution infrastructure”. However, this is as concrete a de-
finition as one can extract from the OMG’s MDA literature, which is clearly unsat-
isfactorily vague to drive the transformation from PIMs to PSMs. The most concrete
definition of “platform model” available today comes from the school of thought that
characterizes MDA in terms of transformation between Domain Specific Languages
(DSLs) [70, 69, 162]. According to this school of thought, the essential difference
between the input and output models in the MDA transformation illustrated in Fig. 1
is that they are written in different languages (or languages dialects). In other words,
the information that has to be input into the MTT to effect the transformation is a
description of the languages that the models are written in. Therefore, although it is
not stated explicitly, language definitions essentially play the role of platform models
in the DSL view of MDA. Thus, if one takes a DSL interpretation of Fig. 1, the PIM
is written in one DSL, the PIM in another DSL, and the platform model(s) input to
the MTT is a description of one or both of these DSLs. In this chapter we challenge
both of these implicit assumptions that underpin the generally accepted notions of
“platform” and “platform model”, namely the “platform = execution infrastructure”
assumption and the “platform model = language definition” assumption. In the next
section we start by discussing the traditional view of a platform as an execution vehi-
cle and identify the various elements from which a platform is typically constructed.
Section 3 follows with a description of the traditional ways in which these platform
elements are described. In Sect. 4 we then present a more general notion of “plat-
form” which is sufficient to provide a sound foundation for MDA. Finally, in Sec. 5
we discuss the ramifications of this model for the MDA transformation approach
depicted in Fig. 1 and the model transformation tools which are expected to enact
them.

2 What Is a Platform?

In the context of MDD, as mentioned above, a platform is regarded as “a set of
subsystems and technologies” that provide the capabilities needed to support the
execution of a software application. Because of their complexity, modern execution
platforms are generally visualized and organized as a hierarchy of layers.

Figure 2 gives a schematic view of the layers that one typically finds in an exe-
cution platform. A software application may have access to all the layers in this hi-
erarchy or some of the layers may completely hide layers below them. For instance,
an operating system may make some aspects of the underlying hardware completely
transparent (as in the “DirectX” video driver scheme), or a virtual machine may
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Fig. 2. Typical Platform Layers

completely abstract away the choice of an operating system (as accomplished in
Smalltalk [154]). The notion of a platform that is relevant for a particular application
depends on the set of layers that it makes use of. For instance, if a virtual machine
is not able to completely hide the idiosyncrasies of an operating system’s file sys-
tem or scheduling policy, and these features are utilized by an application, then these
aspects of an operation system need to be part of the application’s perception of its
execution platform. In the following we consider each of these elements in turn.

2.1 Hardware

Computer hardware is the most basic kind of platform on which a computer appli-
cation can run, and forms the base of the hierarchy of layers. A hardware platform
makes a set of basic capabilities available to applications in terms of a set of machine
language instructions, memory and various assisting components, such as a floating
point arithmetic unit etc. Thanks to compiler technology, these rarely if ever have
to be considered in application development. However, sometimes the performance
criteria of a platform may only be met if certain special-purpose hardware (such as
a digital signal processor) is used. In such cases, these hardware capabilities have to
be included in the platform model.

2.2 Operating System

The second layer in the hierarchy of platform elements is usually regarded as being
the operating system. This provides a whole host of additional capabilities such as
file systems, processes, threads, etc. Operating systems are rarely regarded as cover-
ing or hiding the underlying hardware because they do not reproduce the execution
capabilities offered by the hardware, but rather augment it with many additional ser-
vices. It is quite common for software applications to depend on the specific capabil-
ities offered by an operating system just as much as on the underlying hardware. For
example, one often speaks informally of the “Wintel” platform. Thus an operating
system also needs to be part of an application’s perception of its platform.

2.3 Virtual Machine

Not all platforms have a virtual machine layer, but if present, this layer is typically
regarded as being on top of the operating system layer. The role of a virtual machine
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is to make the actual choice of operating system and hardware transparent. By do-
ing so it obviates the need to compile all parts of the application down to the layer
of the operating system and hardware. A virtual machine may completely hide the
underlying layers from the layers above, or it may let some of the underlying layer’s
functionality or properties shine through.

2.4 Language Support

Any layer above the virtual machine layer, or in its absence the operating system
layer, assumes a certain language which library, framework and application are ex-
pressed in. While most of the support for executing the language is provided by the
virtual machine or hardware, the compiler adds important functionality in the form of
a language runtime system that is a part of the execution platform. Also, high-level
language constructs made available to layers above are expressed as templates of
low-level byte code or machine code. In addition, predefined values available to pro-
grammers may be supported by an underlying virtual machine but are part of, and
are typically generated by, the corresponding language support. The classic “run-
time” system that compilers bundle with their application hence also needs to be
counted as “language support”.

2.5 Libraries

Object-oriented programming languages like Java, C++ or Smalltalk typically come
with a rich set of libraries providing additional, predefined functionality. Some of
these libraries are regarded as standard, and must be present in any platform that aims
to support the language, while others are “optional” and provide solutions only for
specific domains or purposes. Libraries are the basic mechanism by which middle-
ware technologies that form the foundation of distributed platforms are realized. All
of the main capabilities associated with middleware technologies, ranging from “re-
mote message interchange” and “transaction support” to “components and services”,
are made available to developers in the form of so called “Application Programming
Interfaces” (APIs) as libraries. Thus, the libraries upon which an application depends
form an essential part of its perception of its platform.

2.6 Framework

In contrast to libraries, which can be regarded as passive building blocks for the
assembly of software, frameworks contain active control code. They pre-structure
applications built using them according to some standard control scheme and pro-
vide standard solutions for a family of applications. A middleware solution featuring
services like “transaction control” or cleverly managed persistence which embod-
ies certain standard usage styles, is much more akin to a framework than a library.
The special utility of a framework in providing an execution infrastructure over and
above a library is not only the generic control code but also the design of how to
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use parts of the framework (or a library) in a generic way across a family of applica-
tions. Technically, one could subsume frameworks under “Libraries” as well, since
they also represent standard, predefined code. However, if we want to characterize
the purpose and nature of the predefined code, it makes sense to distinguish between
library and framework layers.

3 Describing Platforms

Having discussed the various elements that comprise a modern execution platform,
in this section we now discuss what information needs to be captured to fully char-
acterize a platform from the perspective of an application.

3.1 Hardware

A hardware platform is characterized by the set of instructions, memory model and
further functionality that it supports. In general, some form of assembler language
plus a description of available hardware components is sufficient to formally capture
the properties of a particular type of hardware platform.

3.2 Operating System

An operating system is characterized by the set of services or so-called “system calls”
that it makes available to applications. Although these services are ultimately real-
ized in terms of routines implemented in the underlying hardware platform, applica-
tion programmers, or users interacting directly with the operating system, invariably
invoke them using a high-level linguistic representation. Therefore, the definition of
the system calls supported by an operating system usually involves the use of a lan-
guage to describe the signatures of the calls that can be invoked. For instance, in the
case of the Unix operating system this interface (and implementation) language is
“C”. Furthermore, an operating system generally offers standard instances which ap-
plications can use. Unix , for example, offers instances such as /dev/null, /dev/zero,
or a system timer.

3.3 Virtual Machine

The description of a virtual machine is usually more complex than that of an operat-
ing system because it involves the definition of some of the programming language
features as well as the predefined system calls that the language environment pro-
vides. In other words, it needs to cover both hardware and operating system layers
plus an additional language support layer (see below).
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3.4 Language Support

The description of a (programming) language is generally captured in terms of four
main elements:

(1) abstract syntax
(2) concrete syntax
(3) static semantics (or well-formedness rules)
(4) dynamic semantics (or behavior semantics)

Usually the static semantics (3) is checked prior to execution (e.g., by a compiler), so
it is not normally necessary to include it in the description of the runtime infrastruc-
ture, i.e., the platform model. Likewise, the concrete syntax (2) typically plays no
role at runtime, as it will have been compiled to byte code, or machine code prior to
execution. In some cases, one might rely on runtime interpretation or compilation of
(program-generated) source code, in which case (2) and (3) become relevant again
for a complete platform description.

3.5 Library and Framework

Apart from “native classes”, which are really part of the underling language cast in
terms of library elements, the library and framework aspects of a platform are invari-
ably expressed using the features of the language support by the language support
and virtual machine layers.

4 Platforms and Platform Models for MDA

Having discussed how platforms are typically structured and described in traditional
IT technology, we are now in a position to explain how we believe these approaches
should be generalized to support the notions of “platform” and “platform model” in
MDD. In doing this we have four goals in mind. We want to provide a notion of
platform and platform model that

• is consistent with OMG MDA terminology
• accommodates the approaches described in the previous two sections
• is complete
• is composed of orthogonal concepts, avoiding redundancy and overlap

To achieve these goals we need to move away from two of the fundamental assump-
tions which implicitly underpin the notions of platform and platform models in the
MDA literature today, namely the assumptions that

(1) platform = execution infrastructure
(2) platform model = language definition



126 Colin Atkinson and Thomas Kühne

Although platforms are most commonly thought of as execution infrastructure in the
IT industry, this is not always the case. In general, a platform can be viewed as any
system capable of supporting the fulfillment of some goal with respect to a software
application. Executability is certainly one important goal, but it is not the only one.
Next to execution, useful goals to support are checking, presentation and even the
creation of models, i.e., model development. Thus, the concept of a platform in its
full generality also embraces what is typically viewed as the development environ-
ment as well the execution environment. In this sense, a system which supports the
model-based representation of an application as part of development is just as much
a platform as systems that support its execution, testing, validation (see p. 329 of
this book) or benchmarking for example. Generalizing the concept of “platform” to
encompass both deployment and development environment brings several benefits as
explained below. Ideally, a model of a platform should provide a complete and ac-
curate description of that platform, so that any application that is consistent with the
platform model is guaranteed to be processable by that platform. Although language
definition is an important element of such a platform definition, as discussed in the
previous section it is not by itself enough. There are aspects of a platform that are not
captured using the classic language description techniques, such as the functionality
provided as system calls and libraries. Thus, the concept of a platform model needs
to be extended to include other elements.

4.1 Generalized MDD Platform Model

Analyzing the various platform elements and description techniques discussed in
Sects. 2 and 3 we can identify four basic facets through which information about the
capabilities and rules of an object-oriented platform is conveyed.

Language The first facet is a language facet which describes the basic concepts
with which applications designed to use the platform can be constructed. This, of
course, corresponds to the language support element of the platform description
techniques discussed in Sect. 3.

Predefined types The second facet consists of a set of predefined types (e.g.,
classes) which augment the core language capabilities with additional services.
This corresponds roughly to the library element in traditional platforms, but in-
cludes predefined types coming from the language support layer (e.g., class “Ob-
ject” in Java).

Predefined instances The third facet consist of a set of predefined instances (e.g.,
objects), which are ready to be used out of the box. This facet contains the pre-
instantiated objects that are found in some libraries such as Java’s standard I/O
streams “in, out, err” or Smalltalk’s “true” and “false” instances, but also pre-
existing system timers etc. Furthermore, if predefined operations are thought of
as belonging to a single unified system (in the sense of systems calls) this is
the facet which contains the system as a pre-instantiated object ready to receive
system calls.
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Patterns This fourth facet consists of the additional concepts and rules that are
needed to use the capabilities found in the previous facets in a meaningful fash-
ion. We use the terms “patterns”, but in general any “usage rules”, such as those
that characterize a framework, are found in this facet. Typically, software may be
used in many contexts and ways and displays different properties accordingly. In
order to achieve exactly the functionality and properties intended for a particular
standard platform, one must associate the corresponding usage patterns with the
platform. A complete platform description therefore needs to specify not only
the available parts but also the intended ways in which to use these parts. This
knowledge can be expressed in a variety of ways, including as patterns in the
style of design patterns [140].

In Fig. 3 we represent all the facets including their role by representing patterns as
a circle covering the three other facets. The language facet sits above “Types” and
“Instances”, since it is the defining layer for both. Layer “Language” corresponds to
language definition, whereas “Types” and “Instances” correspond to language usage.
We refer to this view of a platform as the General Platform Model (GPM). We only
show two logical metalevels (types and instances) in this picture since most main-
stream languages do not offer more than two levels of language use. In general, Fig. 3
may feature further facets below “Language”, such as “Metatypes” etc.

Language

Types Instances

Fig. 3. General Platform Model

An important point about the GPM illustrated in Fig. 3 is that it is not intended
to correspond to a cumulative collection of platform model elements as discussed in
Sect. 2, but rather is intended to provide a way of characterizing each element. Each
element may place a different emphasis on the different platform facets, but can
nevertheless be expressed using the same overall notion of platform. For example,
an operating system, which offers most of its capabilities in the form of system calls,
will have a platform model that is predominantly centered on the instance facet. On
the other hand, a virtual machine, which offers a large proportion of its capabilities
in the form of a language, will naturally have a platform model that is predominantly
centered on the language facet. It is our contention that any kind of platform can be
modeled through the appropriate combination of these facets, and, in fact, is typically
incomplete if one more of the facets is ignored. In Fig. 4 we illustrate this by showing
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how each of the traditional platform notions discussed in Sect. 2 can be represented
in terms of the GPM.

Fig. 4. Full platform description

4.2 Stack Example

To illustrate that these four facets are indeed sufficient and minimal let us consider
how a small example would be modeled using the GPM. Figure 5 shows a highly
simple stack class written in Java.

According to our approach, this Stack is written based on a model of the platform
that is going to execute it – namely, the Java Virtual Machine and its predefined ex-
ecution environment – after compilation by the standard JDK compiler. To ascertain
what aspects of the platform are important for this application we simply have to ask
whether a potential change to the way in which the application is represented would
render it non-executable by the target platform. Clearly the features of the core Java
language are important (language facet), because if we were to use any non-Java
features the program would no longer compile. In the extreme case we could write
the code in another language like C++, but then the application would be targeted
to a different platform and would not be executable on the Java platform. Another
important feature of the stack class is its use of the utility class “Vector” from the
predefined Java library (types facet). This is clearly another dependency on the Java
platform, since if this class were not available, or were given a different semantics
to that expected, the application would not run or would not run as expected. This
dependency has nothing to do with the basic language (language facet), however.
It would be perfectly possible to define another platform based on the same Java
core language but with a different library of predefined classes. Another dependency
of the stack class on the Java runtime environment is its use of the standard output
stream “out” to output messages (instances facet). Although the stream is accessed
via the library class System, in effect, “out” references a predefined stream object.
As with the predefined classes such as Vector, the absence of the standard output
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import java.util.Vector;

public class Stack {
protected int max, elems;
protected Vector entries;

public Stack (int maxValue) {
max = 10; elems = 0;
entries = new Object[max];

}

public void push (Object o) throws Exception {
if (elems < max) {

entries.addElement(o);
elems++;

} else {
System.out.print ("Stack is full")
throw new Exception("FullStackException");

}
}

public Object pop () throws Exception {
if (elems >= 0) {

return entries.lastElement();
} else {

System.out.print ("Stack is empty")
throw new Exception("EmptyStackException");

}
}

}

Fig. 5. Java Stack example

stream, or a change to its semantics, would change the Stack’s ability to execute on
the platform, or would change its intended effect.

Language
(Java)

Types
(e.g., Object,
Vector, etc.)

Instances
(e.g., "in",
"out", etc.)

(e.g., Iterator, 
Decorator, etc.)

Fig. 6. GPM representation of the Java platform
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Figure 6 illustrates how the various elements of the standard Java platform can be
represented according to the GPM approach. For simplicity we have refrained from
extending the example to feature a full application of a “Handle Body” pattern, such
as the Bridge pattern [140], and therefore left out the patterns facet. As illustrated
by this example, a platform changes if any one of the facet elements in the GPM
changes. Thus, a change to the types or to the instances results in a different plat-
form even if the core language remains the same. In fact, this is precisely how Java,
as a general technology foundation, has been adapted by Sun to support the many
middleware and enterprise technologies that it is now known for. The core Java lan-
guage remains untouched whenever possible, but the set of predefined set of types
and instances is extended or changed. Figure 7 shows how the J2EE platform is de-
fined by adding additional predefined types and instance features to those available
in the basic J2SE platform, leaving Java as the base language in the language facet.
In addition, the platform contains a well-defined set of new patterns which describe
how these types and instances should be used.

Java

Java std.
classes

&

J2EE interfaces
(e.g., EJBHome)

Java std 
I/O streams

&        

J2EE instances
(e.g., JMS Queue,

Application Container)

&

Fig. 7. J2EE platform

An advantage of explicitly separating the distinct aspects of a platform in a GPM
is that the relationship between high-level and intermediate-level representations of
applications is clarified. Java technology, for example, actually defines two plat-
forms: the high-level language platform in which application code is represented
in the Java high-level language (like the Stack class in Fig. 5), and the byte code
platform in which application code is represented in Java byte code. Thus, a full
model of standard Java (J2SE) technology would include two GPMs, one describing
the capabilities used by application developers based on the Java high-level program-
ming language and the other describing the capabilities of a Java Virtual Machine in
terms of Java byte code. A Java compiler can then be understood as a very special-
ized model transformation tool which maps models written according to one GPM
into models written according to another. As a more complex example we consider
how the GPM might be used to model the various language and capabilities in the
“.NET” platform. The generic term .NET encapsulates a wide range of development
technologies ranging from enterprise servers to web services. However, the core of
the technology is the so-called .NET framework which provides a variety of different
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execution platforms. The basic architecture of this family of platforms is described in
an ECMA standard, known as the Common Language Infrastructure (CLI) [63]. One
of the key goals of this standard is to make it possible for code written in different
languages to interoperate. To achieve this, the CLI defines a language-spanning type
system, known as the Common Type System (CTS) and a core set of features (the
Common Language Specification (CLS)) that all compliant languages must support.
Code written in a language that is compliant with the CLS is referred to as managed
code and is guaranteed to be able to execute all .NET features and to interoperate
with all other managed code, regardless of the managed language used to write it.
Figure 8 illustrates how the GPM can be used to represent the family of platforms
encapsulated by the .NET framework.
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VB Types
.NET FW 
Classes

Console IO
Debug
Asserts

VB Types
.NET FW 
Classes

Console IO
Debug
Asserts

C#

C# Types
.NET FW 
Classes

Console IO
Debug
Asserts

Managed C++
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.NET FW 
Classes

Console IO
Debug
Asserts
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.NET FW 
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.NET
Intermediate

Language

Common
Types

Console IO
Debug
Asserts

Fig. 8. .NET platform family

The GPM at the top of Fig. 8 represents the low-level execution platform defined
by the CLI in terms of the CTS and the intermediate language. This is implemented
as the Common Language Runtime. The lower three GPMs in Fig. 8 represent some
of the different managed language environments currently implemented. The only
aspect that differs in these GPMs is the base language in the language facet and the
availability of extra language specific types, such as Visual Basic specific types in
the second GPM, C++ specific types in the third GPM, etc. Several of the GPMs in
addition contain specific features in their instance facet. For example, the C++ GPM
contains the system instances as an abstraction of the underlying runtime system
responsible for realizing system calls, the J# GPM contains the usual standard I/O
instance objects such as “in” and “out”, etc. Furthermore, each of the platforms in
the platform family defines a set of patterns (usage guidelines) for the use of the
common and specialized features.

Most of the “.NET” features are wrapped up in the predefined type library cap-
tured in the type facet of the GPM. In the case of .NET, the framework library con-
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tains a vast collection of classes which provide a wide range of capabilities ranging
from basic network and middleware services through to features for database access,
dynamic web page generation, GUI development and web service creation.

5 Model Transformation Tools

In the previous section we introduced the concept of the GPM, and explained how it
can be used to model all of the different kinds of execution platforms encountered in
MDD. We also introduced the notion that all environments which perform some use-
ful function with respect to a software application should be regarded as platforms
and characterized using GPMs, not just execution platforms. In this section we dis-
cuss the ramifications of these ideas on the MDD vision, and explain how they help
resolve the issues identified in the introduction.

The MDA literature usually presents the core transformation concept as if plat-
form specificity or independence of the input and output models were a binary prop-
erty. For example, in Fig. 1, the input model is referred to as “platform independent”
and the output model as “platform specific”, but there are two reasons why it is inap-
propriate to think of platform independence/specificity in this black or white manner
given the current “platform = execution infrastructure” assumption of MDA.

First, it only makes sense to speak of platform independence and platform speci-
ficity as binary properties in such a situation if one has an “ideal” MTT which can
perform the transformation from complete platform independence to complete plat-
form specificity in one step. Otherwise, the many steps required to arrive at the bot-
tommost PSM, starting from a high-level PIM, automatically introduce shades of
platform specificity. However, such an ideal tool is a long way from realization.

Second, even if such an ideal MTT were available it might still be desirable to
produce the models at intermediate levels of abstraction which highlight a particular
aspect of the architecture or reveal a certain aspect of the application (p. 139, p. 363
of this book) [22]. Thus, for the foreseeable future, the MDA transformation step
illustrated in Fig. 1 is likely to be applied in the context of a chain of transformation
steps, each creating a model of the application which is closer to the final execution
platform than the previous model. Only the first and last application models in such a
chain would then be characterizable as either (fully) platform independent or (fully)
platform specific, and the intermediate models would have a certain degree of plat-
form independence/specificity which lies somewhere between. This view is in fact
explicitly acknowledged in the MDA Guide which states that:

“Platform independence is a quality, which a model may exhibit. This is the
quality that the model is independent of the features of a platform of any
particular type. Like most qualities, platform independence is a matter of
degree.”

Given this situation, therefore, Fig. 9 represents the currently prevailing view of
how MDA transformation technology will be used in practical software engineering
scenarios.
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X80% independent of Z

Y60% independent of Z

W100% independent of Z

Platform Z0% independent of Z

Model of A
based on W

Model of A
based on X

Model of A
based on Y

Model of A
based on Z

Fig. 9. Existing view of the MDA transformation chain

Several aspects of Fig. 9 are worthy of note. First, although all of the application
models in the chain are “based on” (i.e., represented in terms of) something, only the
bottom model is based on an actual executable platform. According to the “platform
= execution infrastructure” assumption, X, Y and Z upon which the other models
are based are not platforms, since the associated models are not yet executable. The
question is: if they are not platforms, what are they? The DSL school of MDA would
answer that these are DSLs. However, as explained in the previous sections, DSLs
described using the traditional language definition techniques are not in general suf-
ficient to describe all the characteristics/facets which such models might need. In
particular, they do not capture type libraries, instances and patterns.

Figure 10 shows the alternative view of the model transformation chain based on
the proposals put forward in this chapter. The main point to note is that W, X and
Y on the right-hand side of the picture are now also viewed as platforms, not just
Z. They may not be platforms supporting execution but in our approach they would
nevertheless be considered platforms and would ideally be represented as GPMs.
This in turn means that all of the application models can be viewed in one sense as
PSM because they are all based on (and thus 100% specific to) the platform they are
written in terms of. It is still of course possible to assign each model a measure of
independence or specificity with respect to another particular platform, such as the
ultimate target platform model for the which the application is being developed. But
by requiring every model to be “based on” exactly one platform model, the original
terminology and intention of the fundamental MDA transformation step once again
becomes meaningful. Every model is specific to one platform and (relatively) inde-
pendent of all the others. The final question which needs to be addressed is how the
proposed model shapes the additional input that drives the transformation. Because
the MDA literature uses the phrases “independence” and “specificity” in relation to
the output model of the basic transformation step, there is an implication that MTTs
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Fig. 10. Proposed view of the MDA transformation chain

will be specific to the input model platform but parameterized with respect to the
output model platform. Such an MTT might, for example, be tied to the UML plat-
form as the base for its input models but parameterized with respect to the platform
model of its output. This situation is illustrated in Fig. 11, which enhances Fig. 10
with information about the input models driving the transformation step.
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Model of Z

Model of W

Fig. 11. Parameterization by ouptut platform models
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In Fig. 10, it is the model of the platform upon which the output model is based
that serves as the additional input to the transformation. This represents only one
point on a spectrum of possible tool parameterization, however. Other tools which
provide a different balance are also feasible. At one extreme, there are MTTs which
are specific to both the input and the output platforms, and cannot handle models
which are targeted to other platforms. Today’s compilers are examples of this kind
of MTT. At the other extreme, one can envisage MTTs which are fully parameterized
with respect to both the input and output platform models as illustrated in Fig. 12.
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Fig. 12. Parameterization by input and output platform models

For the foreseeable future it is likely that we will see MTTs which occupy the
full spectrum of genericity between these two extremes, as illustrated in Fig. 13.
Initially one can expect to see MTTs that are similar to compilers and are hardwired
to transform between two specific platform models, but gradually more generic tools
will be developed which will be parameterized with respect to increasingly more
aspects of the target and source platforms.

6 Summary

In this chapter we have identified two significant problems with the notion of plat-
form and platform model in the current vision of MDA technology and have sug-
gested a possible approach for solving them. The first problem is that the concept
of platform promoted in the MDA literature is strongly associated with the notion
of execution infrastructure, and thus implicitly rules out the consideration of other
kinds of environments as platforms. The second problem is that the prevailing vision
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Fig. 13. Spectrum of transformation tools

of MDA as a vehicle for supporting families of Domain Specific Languages (DSLs)
leads to a de facto way of representing platforms (or descriptions that play the roles
of platforms) that is not rich enough to capture all the characteristics of platforms as
they have traditionally been viewed in the IT industry. Our proposed solution is to ex-
pand the set of environments that are considered platforms to include those that offer
development time capabilities, such as model validation, and to generalize the notion
of a platform model to include all information that is needed to capture the necessary
features of platforms. Such General Platform Models (GPMs) include information
about the predefined types, predefined instances and usage patterns that characterize
a platform in addition to information about the language features supported, as is
currently the case.
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Summary. A software system can be viewed as a combination of separate concerns covering
various artifact types and cross-cutting the primary structure within each artifact type. This
chapter presents a concern-based approach to model-driven development. An aspectual pat-
tern concept is used to represent concerns at different model levels. We back our approach
with a concrete tool implementation called MADE (Modeling and Architecting Development
Environment). The tool has been used in a number of development scenarios providing support
for variability management, framework specialization, maintenance, and system comprehen-
sion. The tool introduces a task-based model-driven development environment and provides
facilities for model generation, checking, and tracing.

1 Introduction

In software engineering, a model of a system is a description or specification of that
system and its environment for some certain purpose [317]. A single system can
be represented using multiple models at various abstraction levels ranging from re-
quirement models to source code. Different models can be expressed using different
forms. Requirements documents can be written in natural language, design models
can be expressed using visual modeling languages such as the Unified Modeling Lan-
guage (UML), and implementation is usually coded using high-level languages such
as Java. Even though these models take different forms, they all represent properties
of the same software system, realized in machine instructions. A clear benefit of this
diversity is that each form may serve the need of different stakeholders in the soft-
ware development cycle. Business managers, for example, are mostly comfortable
with informal textual information and simple visual diagrams. System designers,
however, prefer to analyze systems using more detailed design diagrams whereas
programmers express their software solutions in terms of code.

Model-driven development (MDD) [288] is a practice where models not only are
used as documentation but also become the backbone of the development process. In
MDD, models of the same system are usually derived from each other; a new model
can be generated from an existing one. A model and its derivations are usually con-
nected using various kinds of relationships. These relationships can be formal or
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informal, complex or simple [180]. One way of building and expressing the inter-
model relationships is the use of mapping functions. Mapping functions represent
expert knowledge to transform between one model and another [288]. As the model
is transformed, the new model may be expressed in another form. For example, a
UML design model can be mapped into Java code. Automation has been recognized
as a key factor when deriving models from others [386]. The idea is that most appli-
cation code, for example, should be automatically generated from design models.

Separation of concerns (SoC [85]), which is a principle to modularize a system
into manageable parts, can be used to structure a model into smaller sub-models
that are easier to handle. Each sub-model represents a specific concern (i.e., matter
of interest) in the system. For example, it is important to separate platform-specific
concerns from application-specific concerns. However, because software systems are
typically specified in terms of models at multiple abstraction levels, individual con-
cerns must be addressed at all levels. Thus, the same concern can be represented at
different levels using different notations and languages.

Generally, the key issues in MDD, such as the ability to generate new models
from existing ones or to express the relationships between a model and its deriva-
tions, are judged according to tool support. In fact, the need for MDD tool support
has been widely acknowledged by software developers, as the success of MDD is
strongly dependent on tools. Nowadays, a variety of tools with various capabilities
of applying MDD principles is available on the market. Another key factor for the
usage of an MDD tool is the support for different software development activities.
Ideally, the same tool should fulfill the need of different stakeholders in the devel-
opment process, as every stakeholder might use the tool in a different development
scenario such as model generation, maintenance, or customization.

This work proposes an approach and a tool for MDD by structuring models into
separate concerns at different abstraction levels. The various features and capabili-
ties of the tool allow developers to interact with the environment in different usage
scenarios. The remainder of the chapter is organized as follows. Section 2 discusses
the main characteristics of MDD tools. In Sect. 3, a pattern-oriented infrastructure
for MDD tools is described. Using this infrastructure, Sect. 4 presents a concrete
implementation of an MDD tool. Section 5 illustrates experiences in applying the
proposed methodology and the implemented tool. Related methodologies and tools
are briefly discussed in Sect. 6. Finally, Sect. 7 concludes the chapter.

2 Characteristics of MDD Tools

The main purpose of MDD tools is to facilitate the development of software by rais-
ing the abstraction level at which software solutions are defined. As the rise in the
level of abstraction from assembly languages to high-level programming languages
has improved productivity and increased the quality of software, it is believed that
the same improvements could be achieved by moving the focus of software devel-
opment from programs to models of programs. In order to achieve the goals set for
MDD, these tools should meet the following functional and quality requirements.
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The requirements have been abstracted from research on MDA (Model-Driven Ar-
chitecture) [317] tools such as [35, 369]:

(1) Mapping and tracing of models: new models can be derived from existing ones;
for example, generating code from visual models or customizing models them-
selves. Using MDD tools, developers should also be able to trace elements in
one model to the elements they are derived from in other models. Consequently,
an MDD tool should be able to relate different models expressed in heteroge-
neous notations and languages. In addition, developers should also be able to
modify the derived models by, for example, updating design models or adding
code fragments to the generated code.

(2) Support for different software engineering activities such as specifying re-
quirements, constructing design models, and code generation as well as other
development-process activities such as comprehension and maintenance.

(3) Ability to separate and represent different subject matter in models so that rel-
evant matters are considered and non-essential aspects are deferred to later de-
velopment phases. An MDD tool should also be able to represent the various
relationships between these matters of interest.

(4) Model mappings and transformations should be performed in a controlled man-
ner. The tool user should be given clear instructions on how to perform the trans-
formations and which model parts are being transformed.

Based on requirements 1–2, we can see that one of the technical foundations of
MDD tools is the support for heterogeneous artifacts expressed in different languages
and notations. This is essential for managing models at different abstraction levels. A
second implication of these two requirements is the support for various development
scenarios corresponding to different phases of software development. Requirements
3–4 suggest that every model abstraction level may define its own matter of interest.
For example, some platform-specific information is not required for models at higher
abstraction levels. Therefore, a desired quality of MDD tools is the ability to express
separate concerns of a software system. In the following, these three characteristics
are discussed in more detail.

2.1 Support for Multiple Artifact Types

Software development involves different phases ranging from requirements specifi-
cation to final deployment and maintenance of applications. Each phase is associated
with specific software artifacts that are usually expressed using different languages
(notations). For example, requirements artifacts can be represented using text docu-
ments, design models may be expressed in UML diagrams, and implementation can
be written in Java. MDD tools aim at transforming these different artifacts from each
other. For this reason, these tools should support heterogeneous artifact types (re-
quirements document, design models, implementation) and different languages used
to express these artifacts (UML, Java, XML).

The approach to support multiple artifact types is illustrated in Fig. 1. An MDD
tool, which is represented by a cubical shape, handles different software artifacts.
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Fig. 1. MDD tool support for multiple artifact types

The idea is that such a tool should support various software development processes
handling different modeling artifacts given with different notations. Usually, there is
a many-to-many relationship between software artifact types and the notations used.
A single software artifact can be expressed using different notations. For example,
requirement specification documents can be described using both informal textual
files and UML use case diagrams. The same language can be used to express different
software artifacts. For example, implementation and test code can both be written in
Java.

2.2 Support for Various Development Activities

The success of an MDD tool strongly depends on the diversity of the usage scenarios
it suggests and on the extent the tool supports the needs of different stakeholders.
This is important, especially for developers who play multiple roles in the develop-
ment process. Generally, using one integrated development environment instead of
independent tools minimizes the overhead of learning and switching between tools
and enhances the inter-tool communication. MDD tools supporting heterogeneous
development activities should incorporate a number of core functionalities includ-
ing the ability to represent models, to derive new models from existing ones, and to
define different kinds of relationships between models.

Generating application code from (visual) models residing at higher abstraction
levels has been regarded as the primary expectation of MDD tools. Nevertheless,
these tools might help developers deal with the complexity of other development
tasks. For example, models may be used for verification and simulation purposes
and for increasing the level of automation of testing activities by automatically de-
riving test cases [35]. Furthermore, MDD tools can be used to facilitate maintenance
of existing models. For example, the tool might generate maintenance tasks based on
earlier maintenance decisions. Another example scenario is to use the tool to facili-
tate learning complex system models, for instance through model abstraction (p. 179
of this book) or model customization [188].
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2.3 Support for Decomposing Systems into Separate Concerns

The development of a software system can be divided into sub-problems according
to the different concerns the application needs to incorporate. Applications are then
modeled as hierarchical combinations of concerns. Each concern tackles a specific
matter of interest in the application, such as a specific application functionality or
quality. It has been shown that separation of concerns improves the alignment be-
tween requirements, design, and code of applications and leads to better reuse and
evolution of systems [62].

Decomposing systems into separate concerns is particularly beneficial when de-
veloping applications of multi-tier architecture such as J2EE systems. The architec-
ture of a J2EE system can be decomposed into three layers: presentation, business
logic, and data. Each of these layers represents a separate concern in the system.
Different concerns may serve the needs of different stakeholders in the development
team. For example, graphic designers are usually interested in user interface matters
reflected by the presentation tier only. Even in the case of single-layered systems,
separation of concerns proves to be a useful practice. Software development becomes
easier if the essential aspects of software such as business logic are separated from
other concerns which involve technology-related matters such as security.

Software System

MDD Tool

Concern_1 Concern_2

Concern_3

Concern_3.1 Concern_3.2

Fig. 2. MDD tool support for separation of concerns

Figure 2 shows an arbitrary software system decomposed into a number of con-
cerns. MDD tools should provide a two-way support for such decomposition. First,
the tool should be able to represent the individual concerns as separate entities. Sec-
ond, using the tool, it should be possible to model the various inter-concern relation-
ships. There are two kinds of relationships: overlapping and containment. Figure 2
shows an overlapping relationship between Concern_1 and Concern_2, meaning that
those model elements represented by the overlapping region treat both concerns. As
an example of a containment relationship, Concern_3 is modeled as the composition
of Concern_3.1 and Concern_3.2.

2.4 A Two-Dimensional Development Approach

Figure 3 illustrates a two-dimensional approach for model-driven software develop-
ment. The figure can be seen as a union of Fig. 1 and Fig. 2: an MDD tool should
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represent the different development phases (and the artifact types); an artifact type
is structured into separate concerns. Following this approach, an MDD tool can be
used to support various development activities as shown in the right part of Fig. 3.
The development approach brings a number of benefits including better traceability,
comprehensibility, and maintainability, which are essential qualities in model-driven
software development.

Requirements Architecture Design Implementation Deployment DocumentationTests

Concern_1

Software System

Concern_2

Concern_3 Maintenance

Testing

Comprehension

Application
Development

Activities

MDD Tool
Artifact types

C
o

n
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Fig. 3. A two-dimensional development approach

First, having a concern crosscut multiple software artifacts links the requirements
corresponding to that concern to the model elements satisfying the requirements, to
the code implementing them, and to all other software artifacts reflecting that con-
cern. This is important in various areas of software engineering. In variability man-
agement [82], for example, when a specific variant is selected, that variant should
be represented at all model levels. Second, separation of concerns enhances system
comprehensibility because a concern localizes the focus of software developers to
one specific matter of interest at a time. Furthermore, understanding a certain design
model fragment can be enhanced by backward tracing that fragment to the require-
ment it satisfies. Finally, with a combination of good traceability and good compre-
hensibility, system maintainability becomes simpler and more obvious. For example,
when a requirement is changed, the affected design solution or code is easily tracked
so the propagation of change is better controlled.

In a typical situation, however, a concern might not cover all levels of abstraction,
as shown in Fig. 3. Some concerns, for example, are first expressed at the require-
ments level but deferred to later stages in the development process. For instance,
user authentication is usually not discussed at the architecture or design levels since
at these levels developers prefer to focus on business logic instead. Some other con-
cerns might not be represented in the deployment or documentation levels. An ex-
ample of such concerns is comprehensibility. Other concerns such as maintainability
concerns are not discussed at the requirements level but are often anticipated during
the architecture or design phase.
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3 Concepts for MDD Tool Infrastructure

We propose the use of a generic role-based pattern concept called aspectual pattern
to represent the concern-based decomposition and composition of software systems
as discussed in the previous section. First, we review the principle of separation
of concerns in software development. Then we discuss the main characteristics of
aspectual patterns.

3.1 Separation of Concerns

In software engineering, separation of concerns refers to the ability to identify those
parts of software artifacts that are relevant to a particular concept, goal, task, or pur-
pose. Aspect-oriented software development (AOSD) [124] is a paradigm that ad-
dresses crosscutting concerns by providing means for their systematic identification,
separation, representation, and composition [357]. According to Kiczales [250], two
crosscutting structures imply that neither can fit neatly into the other. Aspect-oriented
programming (AOP) is a recent programming paradigm incorporating the ideas of
AOSD. AOP organizes the crosscutting concerns into separate modules called as-
pects.

Aspects are merged with base programs or models of programs. The process
of merging is called weaving. There are two ways in which aspects are weaved:
static or dynamic. Static weaving modifies a structural base model by inserting new
model elements. Dynamic weaving consists of adding at runtime new behavior to
applications.

Traditionally, aspects have been used to encapsulate the different concerns cut-
ting across several classes or other units of decomposition within the same level of
abstraction, for instance implementation classes. Recent research work (e.g. p. 237
of this book, [419]), however, extends the ideas of aspect orientation to support the
representation of concerns within and across software artifacts. Similarly, this work
argues that the crosscutting nature of concerns could be extended to cover the differ-
ent features of software cutting across various levels of abstraction. A single concern
would then have a specific representation at different model levels expressed using
different artifact types. In the next section, we describe a concrete pattern concept
for implementing such concern-based composition and decomposition of systems.

3.2 Aspectual Patterns

A solution for modeling the two-dimensional development approach shown in Fig. 3
is to use the so-called aspectual patterns [191]. An aspectual pattern1 can be viewed
as a configuration that captures an aspect cutting across various software artifacts. It
is an organized collection of software elements capturing a concern that is relevant
for some stakeholder of a software system.

1 Aspectual patterns have little to do with, say, design patterns: an aspectual pattern is a
low-level mechanism that can be used to represent a design pattern or some other concern.
Generally, aspectual patterns are system specific.
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Aspectual patterns are described in terms of roles and the relationships between
them. A role has a type, which determines the kind of software elements that can
be bound to the role. A pattern can be associated with multiple sets of role types
(e.g., UML, Java, etc.). Each set groups together related role types. For example,
there is a set of role types for representing UML class diagram elements. In order
for an aspectual pattern to crosscut multiple software artifact types, it should support
heterogeneous sets of role types. For simplicity, the term pattern will be used in the
remainder of the discussion to refer to aspectual patterns.

Pattern roles are attached with a number of properties. Each role may have a
set of constraints. Constraints are structural conditions that must be satisfied by the
concrete element bound to a role. A constraint of a UML association role P, for
example, may require that the UML association bound to P must appear between the
UML classes bound to certain other UML class roles Q and R.

A cardinality value is defined for each role. The cardinality of a role gives the
lower and upper limits for the number of the elements bound to the role in the pattern.
For example, if a role of type UML operation has cardinality value 0..1, the operation
is optional, because the lower limit is 0.

Roles may depend on other roles. For example, there is a dependency from role
P to role Q since the binding of P depends on the binding of Q. In this case, a UML
class should be bound to role Q before that class is used when binding a UML asso-
ciation to role P.

A default element can be defined for a role. If a role with a default element
specification is to be bound during the pattern instantiation process, the binding can
be carried out by first generating the default element according to the specification,
and then binding the role to this element. The specification of a default element may
refer to the (elements bound to the) other roles, implying dependencies between the
roles. Often, it is sufficient to calculate the value of the element name before the
element gets generated.

In this work, aspects are represented using a role structure that can be instantiated
and weaved into base models. The weaving corresponds to the binding of the roles:
each role stores the information of a joint point. The constraints that are associated
with a given role can be used to determine the context where the aspect may appear,
and the constraints can be used to check whether the aspect, implemented by the pat-
tern, is correctly weaved. There are a number of advantages in representing aspects
as role-based patterns:

• Flexible weaving process: In contrast to traditional weaving, the weaving of as-
pectual patterns is considered as an interactive, incremental process where the
join points are located under the guidance of a pattern tool, rather than in a fully
automated fashion. The weaving process is performed as simple tasks in the con-
text of the developer, rather than as a large black-box operation. By task we mean
a simple action that adds an element or enforces a property on the base model. In
the context of aspectual patterns, a task stands for binding an unbound element
or enforcing a role constraint.
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• Addressing several key challenges in aspect orientation: First, aspect overlapping
can be represented and implemented in a straightforward way using role-based
pattern composition techniques where a model element can play different roles
in different patterns. Second, aspectual patterns offer a symmetric model where
there is no explicit distinction between “base-level” elements and “aspect” ele-
ments. Yet, using binding information it is still possible to highlight the effect of
aspects in base models. Another desired property of aspectual patterns is the abil-
ity to support various phases of the development process as roles can be bound to
software and non-software elements covering various kinds of system artifacts.
Finally, aspectual patterns can be reused in multiple contexts. Roles are attached
with parameterized properties whose values are calculated and adapted to the
context where the patterns are applied.

3.3 Pattern Role Diagrams

In order to improve the comprehensiveness of pattern structures, Fig. 4 introduces a
notation for visual pattern specification. The figure depicts a role diagram of an as-
pectual pattern for managing system security. For simplicity, we discuss the pattern
structure specified using a single set of role types, i.e., UML element types. In the
next section, the representation is extended to multiple sets. Security is recognized
as a critical concern, for example, when developing business applications. The as-
pectual pattern illustrated in the figure shows how security should be modeled in the
system under development.

A ConcreteSecurityManager class provides a checkPermission operation which
checks the security policy of a custom permission ConcretePermission. The nodes,
marked in white, depict the pattern roles. The ConcreteSecurityManager role, for ex-
ample, stands for any concrete element (in this case a UML class) that implements
a custom security policy. The type of the role is specified above the role name. The
edges in the upper part of the figure denote the dependencies between the roles. There
are two kinds of dependencies: 1) the dependency from role checkPermission to role
SecurityManager, which is marked with a diamond-headed line, represents the con-
tainment relationship between the elements that may play these two roles; and 2) the
dependency from role ConcreteSecurityManager to role SecurityManager, which is
marked with a light-arrow-headed broken line, stands for a logical relationship. In
this case, any element that plays role ConcreteSecurityManager should implement
the concrete element that plays role SecurityManager. The cardinality value (“1”
for exactly one, “?” for optional, “*” for zero or more, “+” for at least one) of a role
comes together with the role name. For instance, the cardinality value of ConcreteSe-
curityManager is “+” meaning that there should be at least one element bound to this
role. If not otherwise indicated, the cardinality of the role is 1.

In order to show how the pattern can be applied, the bottom part of the figure
gives a possible concrete binding (weaving). The concrete element FilePermission,
represented by a dark-gray node, plays role ConcetePermission. This is marked by
the double-arrowed line between FilePermission and ConcetePermission. There are
two elements that play role ConcreteSecurityManager. This is a direct implication
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Fig. 4. Role diagram of an aspectual pattern for security

of the “+” cardinality symbol associated with this role. In case several concrete ele-
ments play the same pattern role, the order of the binding is indicated by an integer
index. Moreover, the dark-headed arrows in this part of the figure denote the order of
how the bindings should be performed. For instance, the binding of SecurityManager
to its concrete element is a prerequisite for the binding between ConcreteSecurity-
Manager and WorkingDaysSecurityManager.

3.4 Using Aspectual Patterns for Multiple Artifact Types

As described earlier, an aspectual pattern captures an aspect cutting across various
software artifacts. This situation can be described using a heterogeneous aspectual
pattern supporting multiple sets of role types (i.e., UML, Java, etc.). Considering
the pattern discussed in Fig. 4, a heterogeneous aspectual pattern for security, for
example, can be used to illustrate how security is represented in a software system
implementation and documentation in addition to its design model.

Figure 5 shows the security pattern covering three different artifact types. The
artifact types are represented by roughly circular shapes. For brevity Fig. 5, which
can be regarded as an extension to Fig. 4, does not show role bindings. In addition
to the design model, the pattern has roles for implementation and documentation.
At the implementation level, there is a role named ConcreteSecurityManager. This
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Fig. 5. Role diagram of a heterogeneous aspectual pattern for security

role is of type Java class and is used to represent a class implementing a specific se-
curity policy. Furthermore, there is a role at the documentation level for registering
the used Java implementation in the system API documentation. This role is named
securitySupport and should be bound to a text fragment providing the API documen-
tation fragment. The text fragment should be stored in the API documentation file
that should be bound to the APIDocumentation role.

3.5 Composition of Aspectual Patterns

In Sect. 2.3, two kinds of relationships between concerns have been identified: con-
tainment and overlapping. Assuming that aspectual patterns are used to specify sys-
tem concerns, one needs to define proper techniques for representing such kinds of
relationships. Let us first discuss containment and overlapping in the context of as-
pectual patterns.

Containment

This relationship is the simpler of the two. In the context of aspectual patterns, this
relationship basically means that it should be possible to group together a number
of patterns in order to express a larger concern. Realizing such a concern means
applying all the constituent patterns defining that concern.
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Overlapping

Using the role-based pattern structure, it is possible to define the overlapping rela-
tionship between aspectual patterns in terms of overlapping roles. Assuming that the
overlapping region of two patterns is defined using two overlapping roles, applying
both patterns means that the two overlapping roles are bound to the same concrete
element. The concrete element should reflect the properties of both roles assuming
that the two roles do not have conflicting properties.

Composition Operator

We define a composition operator for aspectual patterns that takes care of the above
two cases. Using the operator, it is possible to express larger patterns in terms of
smaller ones. During the composition process, a role overlapping, if any, is dealt
with by merging any two (or more) overlapping roles into one role, meaning that
the overlapping roles are bound to the same concrete element. The role overlapping
relationships are expressed in terms of composition rules, as illustrated in the next
example.

The composition of two patterns results in a pattern. The composition operator
we define is a binary operator that takes two arbitrary patterns and returns a possibly
larger one. Given two arbitrary patterns X and Y, if roleX and roleY are overlapping
roles in patterns X and Y respectively, then the composition of X and Y can be ex-
pressed as follows:

Z = +(X,Y, {(roleX, roleY )})

Z is said to be the composite pattern of X and Y. The composition formula specifies
the two patterns to be composed followed by a set of tuples defining the overlapping
roles. In the composite pattern Z, the role representing the overlapping of roleX and
roleY, say roleZ, is said to be the unified role of roleX and roleY.

Given the above definition, we can define the following composition properties:

• Two roles roleX and roleY can overlap only if they are of the same role type.
• Two roles roleX and roleY can overlap only if the parent roles of roleX and roleY

(the roles where roleX and roleY are contained), if any, are overlapping too.
• If roleX and roleY are two overlapping roles, then the cardinality of the unified

role roleZ is reduced to the more restricted cardinality of the two roles.
• If roleZ is the unified role of roleX and roleY, then roleZ has at most the total

number of dependencies (both outgoing and incoming) of roleX and roleY. If
roleX has n dependencies and roleY has m dependencies, then roleZ has at most
n+m dependencies and at least max(n, m) dependencies. This is because some of
the dependencies (dependencies having the same target role) of roleX and roleY
can be the same.

• Similarly, roleZ is associated with the constraints of roleX and roleY. If roleX has
n constraints and roleY has m constraints, then roleZ has at most n+m constraints
and at least max(n, m) constraints. The constraints having the same type and
value are treated as the same.
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• Patterns X and Y are said to be disjoint if they have no overlapping roles. X and
Y are said to be fully composed if there is a one-to-one mapping between all
roles of X and Y.

Example

Figure 6 illustrates a situation where the security policy in a software system is log
based. When designing a software system, security and logging are usually identified
as two separate concerns. A common situation, however, is to compose these two
concerns in one important concern, called log-based security. This new concern can
be considered, for example, in order to check if the software system comes under
attack by unauthorized sources at runtime.
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Fig. 6. Composing security and logging

Figure 6 shows two composed patterns. The pattern for security has the structure
explained in Fig. 4. The pattern for logging defines roles for specifying the concrete
logger to use and the logged operations to be logged. Role Logger should be bound
to a UML class representing the used logger class. Role LoggedClass should be
bound to the class to be logged, while loggedMethod represents the individual logged
methods of that class.

In the above situation, the log-based security concern can be implemented by
applying the two patterns PS (for security) and PL (for logging). During the bind-
ing process, roles ConcreteSecurityManager of PS and LoggedClass of PL should
be bound to the same concrete element. The purpose is to log the security manager
operations being called. The two class roles are said to be overlapping. Furthermore,
roles loggedMethod and checkPermission should also be bound to the same con-
crete operation. The implication of this overlapping relationship is that the method
implementing the security policy is recorded in the system logs. An overlapping rela-
tionship between two roles is graphically represented using a dashed double-headed
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arrow linking these two roles and is textually expressed in terms of composition
rules. The composition rules in Fig. 6 are defined in terms of two role pairs. Each
pair represents two overlapping roles.

3.6 Identifying and Documenting Aspectual Patterns

In order to be able to identify and structure system concerns (and thus the aspec-
tual patterns), a high-level modularization technique based on concern architecture
views is used. Concern architecture views are introduced in [247]. Typically, each
concern in a concern architecture view tackles a specific area of interest in the soft-
ware system. Concerns can, in turn, be composed of smaller units of interest. Each of
these small units is treated as an aspectual pattern. In this way, concern architecture
views are used to define and structure a system of aspectual patterns for modeling
the software system.
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P_1.2
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Pattern System

Resources

<<Pattern>>
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Fig. 7. Identifying aspectual patterns

The left part of Fig. 7 depicts the concern architecture view of an arbitrary soft-
ware system. The log-based security concern, discussed in the previous section, is
used as one of the example concerns. In addition, the figure shows three other con-
cerns. There is a concern named Resources. This concern stands for adding to the
system new resource types such as printer jobs or database connections. There are
two other arbitrary concerns, Concern_1.1 and Concern_1.2. The aspectual patterns
modeling these concerns are represented using rectangular shapes. In addition to
illustrating concerns and patterns, the figure shows, using dashed arrows, possible
dependencies between individual patterns. For example, there is a dependency from
the pattern for logging (PL) to the pattern for security (PS) since the model elements
for security need to be identified before they are logged. Another dependency links
pattern PS to the pattern handling resources. The reason is that system developers
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want to define a security policy for every added resource type. As explained earlier,
the log-based security concern is defined using two overlapping patterns. However, it
is possible that a concern is formed using two disjoint smaller concerns. In this case,
this concern is modeled using two disjoint aspectual patterns. This is the example of
Concern_1.

The right part of Fig. 7 shows the list of patterns identified using the concern
architecture view. Assuming a pattern-based MDD tool, it is essential to be able to
model both the individual patterns and the various relationships between them. The
next section presents a concrete implementation of a pattern-based tool that can be
used to specify and apply heterogeneous aspectual patterns.

3.7 Aspectual Patterns as Transformations

As discussed earlier, transformation is an essential property for MDD. The main goal
of model transformation is to document the relationships between models and to pro-
vide rules for deriving a model from another. Models at both ends of the transforma-
tion can be either within the same level of abstraction or at different levels. Further-
more, transformation can be applied instantly or incrementally. Instant transforma-
tion means that the transformation is carried out in a single batch operation whereas
incremental transformation implies that the transformation is performed through a
number of transformation steps.

Aspectual patterns can be thought of as a mechanism for incremental transforma-
tion, where a transformation step involves generating the possible default elements
for unbound roles based on their specifications. The order of the transformation steps
is implied by role dependencies. Thus, the relationships between model elements are
in fact embedded in the role specification. Because aspectual patterns are heteroge-
neous, the transformation can be performed from and to any level of abstraction. The
idea has been applied to achieve an open MDA environment [393].

4 Implementation – MADE

This section discusses the main components and features of the MADE (Modeling
and Architecting Development Environment) tool and shows how heterogeneous as-
pectual patterns are represented and composed in MADE. However, the way patterns
are applied is discussed in Sect. 5.

4.1 MADE Toolset

In order to demonstrate the heterogeneous aspectual pattern concept, a prototype
tool known as MADE [193] has been developed. The MADE platform itself is the
result of integrating three different tools: JavaFrames [183], xUMLi [348], and Ra-
tional Rose [368]. JavaFrames is a pattern-oriented development environment built
on top of Eclipse [98]. Rational Rose is used as the UML editor. The third compo-
nent, xUMLi, is a tool-independent platform for processing UML models and is used
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for integrating JavaFrames and Rational Rose. In addition to acting as a Java IDE,
Eclipse offers a number of facilities useful for software development including a va-
riety of integrated editors (such as for Java and text) and other project management
tools. The MADE toolset can be downloaded from http://practise.cs.tut.fi/fred.

Originally, JavaFrames was developed as a pattern-driven specialization environ-
ment for Java-based frameworks. For this reason, the pattern role types have initially
been Java specific. In order to support the heterogeneous pattern concept, however,
support for new role types has been added. For modeling purposes, a set of UML-
specific role types has been developed. A third set of role types has been designed
for supporting general text file operations. In addition, there are a number of other
role types representing informal tasks, reminders, and user input values.

When constructing new role types, the only thing one assumes is that the tools
used to process the relevant system artifacts offer an API which allows the MADE
tool to access the elements of those artifacts and to catch certain events (e.g., when
an artifact has been modified). It is also possible to construct new kinds of constraints
and associate them to proper role types. The same constraint kind can be applied to
different role types, for instance a naming constraint which requires that the name of
an artifact element should conform to a given regular expression.

Figure 8 shows an overall view of MADE. Rational Rose represents the upper
part of the environment. As an example of an integrated editor, implementation code
is displayed in a Java editor (middle view). The left view represents the part of the
environment where patterns are specified and applied. In the next two subsections,
pattern specification is discussed in more detail. Patterns are represented by circular
graphical icons. In the MADE environment, patterns are instantiated as extensions
of other patterns. For example, the Access pattern under the FileSystemAccess node
is an instantiation of the Security pattern specified under the Catalogue node. In the
MADE terminology, pattern Access extends pattern Security.

When a pattern is selected, MADE transforms the pattern into a task list. This
is done by generating a task for each unbound role that can be bound in the current
situation, taking into account the dependencies and cardinalities of roles. The task
view displays the tasks implied by the pattern. This view is divided into two panes:
task titles are shown in the upper pane and detailed task descriptions are presented in
the lower one. In the example figure, a task for providing a logger field is displayed.
There are two kinds of tasks: mandatory and optional. Mandatory tasks are marked
using a red circular dot attached to the task title whereas optional tasks are marked
with a white circular dot. The task presented in the figure is mandatory.

Tasks can be performed in two different ways. The developer might bind the
pattern role to an existing model element. In this case, a binding between a pattern
role and an existing model element is established but the model does not change. In
most cases, however, executing a task means generating a new model element. In
this case, a binding between a pattern role and the generated element is established
and the element is added to the proper editor depending on the type of the element.
If the model element is a UML class, for example, the element is shown in the UML
editor. The middle view depicts the bindings that have been performed. Models can
be freely edited through their dedicated tools: if an artifact is modified, the worst that
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Java Editor

Tasks

Bindings

Patterns

Pattern description

Fig. 8. MADE

can happen is that some bindings in an existing pattern become invalid or certain
constraints defined by the pattern are violated. In this case, the pattern tool warns the
developer about the inconsistencies and proposes corrective actions. It is then up to
the developer to either correct the situation or ignore the warning.

4.2 Presenting Heterogeneous Aspectual Patterns in MADE

Considering the aspectual pattern for security discussed earlier, the actual pattern
specification in MADE adds a number of properties to the role information shown in
Fig. 5. These properties are mainly used by the tool for guiding the user through the
development process. Figure 9 illustrates some of these role properties. For brevity,
the figure does not show all the roles and properties. The roles have been grouped
into three categories; each category represents a particular artifact type.

At the design model level, the definition of role ConcreteSecurityManager in-
cludes a defaultElementName, which is used as a default name when generating the
UML class to be bound to the role. The value of this property is expressed as a tem-
plate referring to the name of the concrete element bound to role SecurityManager,
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SecurityManager: UML Class (1)

ConcreteSecurityManager :
UML Class (+)

 inheritance : Constraint

checkPermission : UML Operation (1)

parameter : Constraint

Permission : UML Class (1)

JavaConcreteSecurityManager:
Java Class (1)

checkPermission : Java Method (1)

APIDocumentationbstract : Text File (1)

securitySupport : Text Fragment (1)

Roles

description: Abstract class encapsulating security managers.

defaultElementName: My<#:/SecurityManager.i.shortName>

description :  Concrete security manager implementation.

taskTitle : Provide  a UML class for concrete security manager.

value: <#:/SecurityManager.i.shortName>

description:  UML operation encapsulating a concrete security policy.

value: <#:/Permission.i.shortName>

description:  A UML class encapsulating the kinds of permissions.

description :  Java implementation for a concrete security manager.

defaultElementName : <#:/ConcreteSecurityManager.i.shortName>

description : Java implementation of a concrete security policy.

description : A text file for documenting system API.

description : Recording API for security support.

Properties

Heterogeneous Aspectual Pattern: Security

Design Model

Implementation

Documentation

Fig. 9. Properties of the pattern for security

Dependencies

Properties

Roles / Constraints

Fig. 10. MADE aspectual pattern

which in this example represents a base class of all security managers. The property
taskTitle is used by the tool for generating a title for the corresponding task. The in-
heritance constraint is used to enforce the generalization/specialization relationship
between concrete elements bound to role ConcreteSecurityManager and the concrete
element bound to role SecurityManager. In this case, the specification says that any
UML class bound to role ConcreteSecurityManager should inherit from the UML
class bound to role SecurityManager. The cardinality of roles is given in parentheses
after the role names. At the implementation level, role JavaConcreteSecurityManager
refers to role ConcreteSecurityManager for generating the default name of concrete
elements. In this case, the specification suggests sharing the same name.

Figure 10 shows a view of the MADE pattern editor specifying the pattern for
security. The left pane shows the hierarchical structure of the pattern roles and con-
straints. In this case, role checkPermission is selected. The right pane is composed
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of two parts. The upper view displays the list of roles which the selected role de-
pends on. The lower portrays exposes the checkPermission role properties discussed
in Fig. 9.

4.3 Composing Aspectual Patterns

Section 3 discussed two kinds of relationships that may exist between different as-
pectual patterns: containment and overlapping. A composition operator was then de-
fined in order to represent these relationships. Figure 11 shows how patterns are orga-
nized and applied in the MADE tool environment. In particular, the figure shows how
individual patterns can be composed to treat larger concerns. Patterns are organized
using architecture nodes. There are three types of architecture nodes: catalogue, con-
cern, and application. Individual patterns are created under the Catalogue root node.
At this stage, each aspectual pattern is regarded as a separate entity treating a spe-
cific concern in a software system and completely unrelated to other patterns. In the
example case, there are two patterns named Logging and Security. The two patterns
respectively implement the concerns discussed in Sect. 3.

The concerns of a software system are represented using concern nodes and are
hierarchically represented under the Concerns root node as shown in Fig. 11. The
figure depicts a single concern named LoggedSecurity. As discussed in Sect. 3, this
concern is the composition of two component concerns: logging and security. If
a concern is implemented by multiple aspectual patterns, that concern may define
rules on how the patterns are composed. Composition rules are specified as a prop-
erty of concern nodes and are currently specified in a text area as shown in Fig. 11.
Each composition rule is formulated using a pair of pattern roles. The first rule, for
example, says that role LoggedClass in the pattern for logging overlaps with role
ConcreteSecurityManager in the pattern for security.

Currently, pattern composition in MADE requires manual enumeration of the
composition rules, which might become a challenging task as the number of rules
grows high. This problem can be partially resolved by keeping MADE patterns small
in size and loosely coupled. Another solution we are investigating is the possibility
to build the composition rules on the fly and compose the patterns when applied to
base models.

Application development is carried out by considering those concerns relevant to
the application needs. Using MADE, the developer selects which concern he or she
wants to realize. The environment then takes care of which patterns to instantiate.
The Application root node in Fig. 11 shows a concrete realization of the Logged-
Security concern. The concrete application is named FileSystemAccess and stands
for developing a security policy for file system access. Access and Logs represent
respectively the instantiation of patterns Security and Logging. When a pattern is se-
lected, the environment displays the tasks corresponding to that pattern. When tasks
are executed, the composition rules are taken into account. If a developer binds a role
that has an overlapping counterpart, the overlapping role is automatically bound to
the same concrete element.
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Fig. 11. Composing aspectual pattern in MADE

4.4 Main Features of MADE

MADE comes with a number of qualities desirable for MDD. The main characteris-
tics of the tool are:

(1) Stepwise development environment: MADE transforms a pattern specification
into a task list guiding developers step by step through model development.

(2) Automatic detection and repair of broken model conventions: If a model is man-
ually edited, the environment provides immediate validation of the model against
the pattern specifications. In the case of a constraint violation, a repair task is cre-
ated to inform the user about the violation. In most cases, the tool provides the
option to automatically repair the violation, for example, restoring a generaliza-
tion/specialization relationship between two classes.

(3) Adapting to developer’s context: MADE is able to record the history of develop-
ers’ tasks and use the recorded information when documenting next tasks. The
tool, for example, uses the names of concrete elements in the textual descriptions
of related tasks.

(4) Support for separation of concerns in models: Using MADE, individual concerns
in a software system are represented as a set of aspectual patterns.

(5) Support for traceability and visualization: Aspectual patterns are used to repre-
sent a concern crosscutting various abstraction levels. When a pattern is applied,
MADE records role binding information which can be used later to link together
different representations of a concern at different abstraction levels or simply to
highlight the effect of a concern in a base model.

(6) Openness to new design conventions: MADE is not bound to a fixed set of pat-
terns. As new concerns are identified, new patterns can be easily introduced to
the existing architecture. In addition, as the application domain evolves, existing
pattern specification can be updated and outdated patterns can be removed. It is
also possible to change the specification of patterns if the roles are not yet bound.
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Manage feature variability across different
software artifacts

Feature variation pattern Product line architect Product developer

Maintenance pattern
Document anticipated maintenance tasks at
different model levels

Designer Maintainer

Framework
specialization pattern

Document the specialization interface of
application frameworks at different model
levels

Framework architect
Application
developer

Comprehension pattern
Learn complex system models through model
customization at different levels of abstraction
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designer

Developer/
Maintainer

PurposeCategory Creator User

Fig. 12. Example categories of aspectual patterns

5 Supporting Different Activities

The MADE tool has been applied to support MDD in a number of ways. In the subse-
quent sections, four applications of heterogeneous aspectual patterns are presented.
Figure 12 depicts four pattern categories relevant to each application: feature vari-
ation patterns, maintenance patterns, framework specialization patterns, and com-
prehension patterns. In addition to the purpose of the pattern, the figure shows the
different stakeholders that are involved in creating the patterns and those involved in
applying them. In the first category, for example, feature variation patterns have been
used to manage feature variability in software systems. In this case, heterogeneous
aspectual patterns are used to represent the different variation points and to make
sure that when a specific feature variant is selected, that decision is propagated to all
models of the application. These kinds of patterns are usually created by product-
line developers specifying the different variation points in the system architecture.
Product developers then apply these patterns to design and implement new products.

In the remainder of the discussion, each subsection discusses a pattern category,
together with an example application. In addition to validating the approach, the aim
of the examples is to discuss the details of MADE from different perspectives. In the
first two applications, the focus will be on the specification and the deployment of
aspectual patterns. The first example shows how the specification of a pattern can be
transformed into a task list and how the tasks are carried out in the MADE tool. The
second example discusses the issue of viewing and browsing the model fragments
that are relevant to a particular concern. In the third and fourth applications, the fo-
cus will be on the role of concern architecture views in the identification of aspectual
patterns, as discussed in Sect. 3.6. The third case study illustrates the use of concern
architecture views to specify the extension points in an example framework special-
ization interface. The last application shows the use of concern architecture views to
describe the customization principles of an example complex model.
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5.1 Feature Variability Management

In software product lines, variability means variation in the definition and imple-
mentation of a specific feature or additional features [82]. Variability can occur at
different levels in the design: product-line level, product level, component level, sub-
component level, and code level [412]. Assuming that variation is represented at
different model levels, it is essential to reflect the choice of a particular variant in
all levels. Typically, every variation point is represented using a separate aspectual
pattern. A single variation point may crosscut various model levels. To represent
this crosscutting nature, feature variation patterns [190], which have roles covering
different artifact types, can be used.

Example

In EJB component architecture [226], for example, the persistence of a BMP (Bean-
Managed Persistence) entity bean can be realized by the use of different database
products. In order to achieve maximum portability, bean providers choose to sup-
port multiple database implementations. Database variation in a BMP entity bean is
considered as a variation point in the bean implementation. In order to manage this
variation point, bean developers use a solution called Data Access Object (DAO)
defining a common interface for all possible data source implementations. When a
BMP bean is deployed, only one database implementation is used.

There are two common solutions to select a data source implementation. The first
is to hardcode the name of the implementation class in a specific registration method
in the bean. When the data source changes, the implementation of that method
changes so that it would return the proper implementation class. Another solution
is to store the name of the implementation class in the deployment descriptor of the
bean, as an environment variable. The bean decides at runtime which data source
to use by looking up the value of this environment variable. In both techniques, ei-
ther the Java code or the deployment descriptor should change according to the data
source selected. However, even if the developer decides to hardcode the implemen-
tation class in the bean code, storing the information of the used data source in the
deployment descriptor might serve other purposes such as application documenta-
tion.

Let us assume that the database variation is given as a feature model and that one
needs to reflect the database choice in the design model of the bean as well. Both the
feature model and the design model are expressed in terms of UML class diagrams.
In addition to filling the variation point in the design model, the class corresponding
to the selected data source should be represented in the registration method and the
deployment description of the bean.

The MADE solution for the above situation is to use a feature variation pattern for
managing the database variation. In this context, the concern that the pattern encap-
sulates is the database implementation feature. The pattern covers four abstraction
levels: feature model, design model, implementation, and deployment information.
The pattern has roles for representing UML model element (feature model and de-
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sign model), Java element (bean implementation), and XML entities (deployment
descriptor).
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Fig. 13. Pattern role diagram for database product variation

Figure 13 shows a pattern role diagram for database product variation. The di-
agram uses the notation introduced in Fig. 5. The shaded roles represent pre-bound
roles that define the context of applying the pattern. The pre-bound role Deploy-
mentDescriptor, for example, is bound to the XML file that represents the deploy-
ment descriptor of the bean. At the level of the feature model, role ConcreteDatabase
represents the database product variation point. When the pattern is applied, the role
should be bound to a concrete UML class reflecting the selected data source. Several
roles in other abstraction levels depend on this role. At the design model level, role
BeanDAOImplementation reflects the data source selection in the design model of
the bean. At the Java implementation level, role Implementation represents a Java
code fragment that registers the proper database implementation class. Finally, at the
deployment information level, role Datasource represents an XML tag that stores the
name of the selected database implementation into an environment variable.

Figure 14 shows a scenario for applying the pattern shown in Fig. 13. MADE
presents a role binding as a task, shown as a textual prompt. The execution of the
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task results in binding the role to a concrete element. The first task is to select the
data source to be used. The developer is shown the list of available data sources:
MySQL, Oracle, and PostgreSQL. The outcome of the task is shown following the
task prompt. The user, for example, decides to use the Oracle database. Next, a new
task for providing a UML class named BeanDAO_Oracle_Impl is shown. The UML
class stands for the implementation class of the DAO interface. Note that the envi-
ronment adapts the task description to the context of the user: the selected database
name Oracle is used in the default name of the UML class. The generated class is
added to the design model of the application. The next task is to register the DAO
Java implementation class to be used by the bean. As a result, a Java code fragment
is generated. The code creates a new instance of class BeanDAO_Oracle_Impl and
assigns it to the bean field holding the DAO object. Finally, the last task is to store
the name of the DAO implementation class in the deployment descriptor of the bean.
For this purpose, a new environment entry DAO_CLASS_NAME is generated. The
value of the entry is BeanDAO_Oracle_Impl.

2

5

3

4

1

6

7

Task result

Next task

Fig. 14. Pattern binding steps

Figure 15 depicts an overall view of MADE after the tasks described above have
been carried out. In the upper left part, the feature model is displayed in the UML
editor. Using the same editor, the design model of the bean is presented in the upper
right view. A proper database implementation class named BeanDAO_Oracle_Impl
is used. The Java editor in the middle shows the generated Java implementation of
the database registration method whereas the right-hand side shows the environment
variable stored in the deployment descriptor file of the bean. The Bindings view
groups together all the role bindings at all abstraction levels. Using the tool, it is
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possible to trace back the concrete elements bound to the pattern roles. However, it
is also useful to know to which roles an artifact element is bound. This feature will
be implemented in future versions of the tool.

Bindings

Feature Model

Design Model

XML DataJava Code

Pattern
Description

Architectures/
Patterns

Fig. 15. Managing database product variation in MADE

Experiences

The aim of this section was to illustrate the details of MADE by studying the use
of a simple feature variation pattern. An important question is “Can the approach
scale up?” To address the question of scalability, we are currently studying the prac-
tical applicability of the approach in an industrial product line [190]. The example
case study is to use the MADE approach to identify, express, and manage variability
in a Nokia GUI platform. The early results have been positive. It was possible to
conveniently present a number of variation points in the platform with a set of het-
erogeneous patterns covering four abstraction levels: the feature model representing
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services provided by the platform, the design model of the product, the Java imple-
mentation of the application, and the product service registry files.

The biggest challenge in the case study has been identifying the variation points
in the GUI platform and expressing them using feature models. The reason is that
the platform documentation was not structured according to the needs of the MADE
approach. Consequently, considerable effort has been spent on studying the product
line itself and interviewing several stakeholders participating in the development and
use of the platform.

Concluding Remarks

This example discussed how heterogeneous aspectual patterns can be used to manage
feature variability. A feature model is defined to represent the variation points at the
requirements level. Application developers need to bind these variation points to a
specific variant. An aspectual pattern is used to represent a variation point in the
various models of a software system. The purpose of the pattern is both to document
the variation points and to generate the required tasks to properly fill in the variation
points at different model levels.

5.2 Maintenance

System maintainability is considered as a development-process concern. Maintain-
ability is an important concern that should be considered early in the design phase
[413], especially in the case of adaptive maintenance. When considered as a con-
cern, maintainability can be expressed in terms of a related set of maintainability
concerns. Each concern corresponds to a large maintenance task that may crosscut
different units of decomposition such as classes or modules. A maintenance pat-
tern [189], which is a concrete usage of the aspectual pattern concept, can be used
to document the anticipated maintenance tasks. Furthermore, maintenance actions
should propagate to all the models of the system under maintenance. A maintenance
pattern, therefore, takes care that changes due to maintenance are propagated to all
model levels. In addition, the pattern specification can be used to generate mainte-
nance tasks based on maintenance actions carried out at higher abstraction levels. It
is important, for instance, that the implementation code of a software system adapts
to any maintenance changes occurring in the design model.

Example

Measuring human–computer interaction is very important for improving interactive
systems and their user interfaces. In order to conduct this kind of measurement,
proper measuring tools have to be implemented. When designing such tools, it is
impractical to fix all aspects of the measurement process as new measurements and
measuring strategies are discovered after the tool is in use. It is important therefore
to anticipate at the design phase those extension points.

As an example, consider some measuring software for making user tests of a web
search engine user interface. Using the measuring tool, it is possible to both log and
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analyze the results of these tests. The measuring tool first writes user interactions
with the search engine into log files, then parses the stored log files, and builds an
object structure based on the logged information. In a second phase, a specific com-
ponent is used to make measurements based on the observed data. There are a variety
of possible measurements such as average time needed to complete a task, average
number of selections made in one task, or total number of selections made during
the test. Many others can be discovered as information is being logged. Furthermore,
a measurer component can be defined by combining any of these measurements.
Therefore, it is possible to design and use new measurer components as the system
runs.

overrides

implements<< UML Class >>
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<< UML Class >>
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Design Model
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ConcreteMeasurement +

inherits
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Fig. 16. Pattern role diagram for extending some measurement software

Considering the example, one can define a maintenance pattern for extending
measurements and for building new measures. Figure 16 shows a structure for such
a pattern. For brevity, some roles have been omitted. The pattern has roles in three
model levels. At the design model level, for example, role ConcreteMeasurer stands
for a new measurer component and should be bound to a UML class in the design
model of the measuring software. The role has two child roles: getNumOfMeasure-
ments represents the operation returning the number of used methods and role calcu-
lateMeasurements stands for the operation that performs the actual measurements.

As a new measurer is added to the design model, a corresponding Java imple-
mentation class should be defined at the implementation level. This is marked by the
dependency from role JConcreteMeasurer at the implementation level to role Con-
creteMeasurer at the design model level. Further, let us suppose that every newly
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Fig. 17. Extending some measuring software in MADE

constructed measurer implementation has to pass a number of test cases in order
to make sure that the measurer combines the measurements in a correct way. For
this, the pattern has roles for generating testing code for every measurer. Role test-
Measurer at the tests level represents a Java method for testing the corresponding
measure. Similarly to Fig. 13, pre-bound roles are shaded.

Figure 17 shows a possible deployment of the maintenance pattern in MADE.
The pattern has been used to provide a new measurement strategy (TimeForTest-
Completion) and a new measurer component (TimeMeasurer). Using MADE, it is
possible to view the effect of applying the pattern to different model levels. The
UML model elements rendered in darker color show the effect of highlighting the
maintenance pattern at the design model level. At the Implementation level, the Java
source files associated with the pattern are shown in the Java editor. In addition, a
method for testing the new measurer is highlighted in the existing TestPlanManager
Java class reflecting the effect of the maintenance pattern at the tests level. Pattern
highlighting is regarded as a tool for tracing a single concern across multiple soft-
ware artifacts.
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Experiences

As another example of adaptive maintenance, we have applied the approach to the
MADE system [189]. The motivation was to show that if the approach works for
general anticipated maintenance tasks, it should work for maintaining MADE itself.
The pattern engine, which is an integral part of the MADE system, has been designed
to support new artifact types and notations. Thus, the case study was to use the tool
to construct new role types.

An experiment for creating two new role types has been carried out in [201].
As a result, a total of 11 Java classes (400 lines of code) have been created. Out of
these, 315 lines of code have been generated automatically while 85 lines of code
have been manually created or edited. Thus, the MADE approach achieved a ratio of
79% of automatic code generation. The other 21% was not automatically generated
since it stands for knowledge that is not captured by the pattern specification. In this
case, for example, it was not possible to anticipate how to resolve an artifact element
bound to a role of the newly constructed type since this depends greatly on the tool
where that artifact element is managed.

Concluding Remarks

In this example application, heterogeneous aspectual patterns have been used to doc-
ument and generate the maintenance tasks required for maintaining a software sys-
tem. In this case, an example of adaptive maintenance is considered. However, other
forms of maintenance can also be supported [189]. Here, maintenance is considered
as an activity that is mainly dealt with at the design and implementation phases. In
contrast, variability management is addressed in the requirements and architecture
levels. Maintenance patterns have roles covering multiple sets of role types in order
to reflect the maintenance actions at all possible model levels. For brevity, the dis-
cussion does not show how the pattern is applied in MADE. Typically, individual
maintenance tasks are similar to the ones described in Fig. 14.

5.3 Framework Specialization

An object-oriented framework is a reusable design expressed as a set of classes im-
plementing the basic architecture for a family of software systems [121]. Framework
specialization is the process of adapting a framework to meet the requirements of a
specific application. Framework specialization is usually regarded as a complex task.
The reason is twofold. First, following the specialization instructions often lack tool
support and can be tedious. Second, there is a lack of assisting application develop-
ers to carry out the specializations at the level of visual modeling languages, such
as UML. As a solution, special-purpose aspectual patterns, called framework spe-
cialization patterns [193], can be used to structure and document the specialization
interface of frameworks into different specialization concerns. A specialization con-
cern crosscuts different software artifacts of the framework specialization. Patterns
are used in order to make the specialization process easier by grouping the spe-
cialization tasks into meaningful parts (concerns) and propagating the specialization
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Fig. 18. Specialization concern architecture view for J2EE

decisions to all generated application models including design and implementation,
and documentation.

Example

J2EE is a component-based and platform-independent architecture for building en-
terprise applications. J2EE applications are constructed by following the architec-
tural rules imposed by the J2EE framework. On top of these architectural rules, sev-
eral design conventions have been proposed to bring better reuse, maintainability,
and portability to these applications [192]. Figure 18 depicts a concern architecture
view structuring the specialization interface of the J2EE platform into a number of
concerns reflecting these architectural rules and design conventions.

There are three concerns for the creation of the three bean types: session,
message-driven, and entity beans. Each of the first two concerns is represented using
a single aspectual pattern whereas the third is composed of several smaller concerns
and thus implemented using more than one pattern. Patterns SessionEJB and Mes-
sageEJB are used to generate a session bean and a message-driven bean respectively.
In order to generate an entity bean, four patterns should be applied. Pattern Enti-
tyEJB models the core components of an entity bean. Pattern ValueObject is used
to optimize the communication between business components and clients. Pattern
DataAccessObject is applied to make the enterprise components transparent to the
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data source used. This solution has already been discussed in Sect. 5.1. This pattern
is applied for generating entity beans with BMP only. The fourth pattern PrimaryKey
is responsible for generating primary key classes for the corresponding entity beans.
In order to locate other business components, patterns SessionEJB, MessageEJB,
and EntityEJB get the service of a pattern named ServiceLocator whose role is to
abstract the complexity of the lookup process.

In order to decouple client access from the core business layer of the application,
two patterns are used: pattern SessionFacade is used to reduce the complexity of the
interaction between clients and business objects by grouping together the access to
multiple beans. In addition, pattern BusinessDelegate is used to achieve loose cou-
pling between clients at the presentation tier and the business services implemented
by the enterprise beans.

The presentation layer is defined using three concerns. There is a concern for pre-
processing requests. This concern is represented by a pattern named InterceptingFil-
ter. The aim of this pattern is to process requests and responses before being passed
to clients. The second concern is for defining a control strategy of how to process
requests and view navigation. It is represented by two patterns. Pattern FrontCon-
troller centralizes the decision how to retrieve and process the requests and pattern
DispatcherView separates the logic on deciding which view comes next from the
view components themselves. Finally, the third concern deals with the view compo-
nent of the presentation layer and is modeled using one pattern named ViewHelper.
This pattern processes business data for getting presentation content.

Figure 19 shows the patterns and the concerns, which have been identified in
Fig. 18, specified in the MADE tool. First, patterns are defined under the Catalogue
node, then they are grouped into separate concerns under the Concerns node. In
addition, the figure depicts a concrete application implemented according to the ar-
chitecture proposed by the pattern system. The application is a web-based to-do list
where a list of users and their associated tasks can be accessed, manipulated, and
stored in a relational database. The Entity_Bean concern is considered to imple-
ment an entity bean for representing users. This is depicted in the figure by the node
User_Entity_Bean. The Session_Bean concern is used to implement a session bean
modeling user tasks. This is illustrated by the Task_Session_Bean. Since the ap-
plication does not need asynchronous communications, no message-driven bean is
developed. This is why the concern Message-driven_Bean is not considered in the
application.

Experiences

Using MADE, it was possible to automatically generate up to 60% of the total lines
of code for the to-do list application discussed above [192]. Manually, it could take
up to 20 hours to construct the code from scratch. Using MADE, the same task
took a couple of hours. Approximately, one-third of the development time was spent
with using the environment for automatic code generation. The rest was to manually
provide custom business code and user interface implementation. The overall design
was made according to the widely used J2EE design patterns.
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Fig. 19. J2EE patterns/concerns in MADE

Therefore, the MADE tool could be used to improve the quality of the application
and reduce the development effort. Nevertheless, identifying the proper concerns
and patterns requires effort and domain expertise. Besides, modeling the patterns in
MADE, in terms of roles and their properties, can be a laborious task. For instance,
it took a couple of hours to model the EntityEJB pattern and several deployment
checks to validate the pattern against its specification.

Concluding Remarks

This section shows how concern architecture views can be used to identify and doc-
ument the relationships between framework specialization patterns specified as as-
pectual patterns. Framework specialization is another example of variability man-
agement. In this case, however, the decision on the variation points is not bound to
a specific feature model. Instead, the specialization decisions are open. For brevity,
the structural specification of the patterns is not discussed and the actual deployment
of the pattern system has been omitted.

Framework specialization patterns are heterogeneous aspectual patterns. Using
MADE, it is possible to generate the design model, the implementation, and the de-
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ployment descriptors of the enterprise application. If servlets are used for implement-
ing the presentation layer, the standard Filter approach can be used when applying
the InterceptingFilter pattern, which means that the pattern has roles for representing
XML files. Furthermore, the patterns at the presentation layer may have roles for
supporting different client implementations such as HTML, JSP, or WML.

5.4 Comprehension

Customization is an essential activity for comprehending complex model structures
since it is easier to study a system one part at a time [343]. Model customization can
be used to adapt a model to specific purposes by identifying only those parts of the
model that correspond to these purposes. Assuming that software systems are rep-
resented using different forms of models, customization decisions should cover all
these model levels. For example, the same customization principles should be used to
customize a design model and the source code of a software system. In this way, the
implementation of the system remains aligned with the design model. Comprehen-
sion patterns [188], which are aspectual patterns reflecting system comprehensibility
issues, are used to group related model parts of complex systems into separate com-
prehensibility concerns. Using comprehension patterns, it is possible to show those
parts of the system that are relevant for a specific purpose and to make sure that
models remain aligned following the customization actions.

Example

JPEG (Joint Photographic Experts Group) [417] is one of the well-known file formats
for compressed images. The structural model behind this standard is an example of a
complex system since it comprises a large number of components, defines complex
inter-component dependencies, and is subject to extension. An efficient way of learn-
ing this complex system is to customize its model according to the specific needs of
the learner, focusing on those parts relevant to the actual context and leaving out the
irrelevant parts.

Figure 20 presents the different relationships between the various JPEG-related
file formats. The file formats are shown using cubical shapes. There are, however,
four main file formats: JPEG, JFIF, EXIF, and DCF. These formats are discussed in
more detail in [188]. The dashed arrows describe the dependencies between these
formats. The DCF format, for example, is an extension of the EXIF format. Conse-
quently, for learning the DCF format, it is required to learn the EXIF format as well.
However, it is not necessary to learn the DCF extensions in order to learn EXIF.

Figure 21 shows a concern architecture view for structuring the comprehensi-
bility of the JPEG-related file formats. There are four concerns; each concern cor-
responds to learning the corresponding file format and is modeled using a number
of comprehension patterns. The DCF format concern, for example, represents the
structural components and rules that correspond to DCF file formats. It is composed
of the EXIF format concern and three DCF-specific comprehension patterns. These
three patterns represent the model elements that are specific to the DCF extensions
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only. The EXIF format concern, in turn, is modeled using two EXIF-specific patterns
and three JPEG-related patterns. The latter three patterns represent the core model
elements required for defining any of the file formats.

Given the above concern architecture view, it is clear that in order to comprehend
the DCF part of the JPEG-related file formats, there is no need to study the model
elements relevant to JPEG or JFIF formats only. Using MADE, only those patterns
corresponding to the DCF format concern have to be applied. The environment pro-
vides learning tasks corresponding to the model elements reflecting the structure of
DCF.

Figure 22 depicts the MADE specification of the architecture identified in Fig. 21.
Individual patterns and concerns are specified in the Catalogue and Concerns nodes
respectively. Furthermore, the figure shows three example customization scenarios
for learning different formats of the JPEG standard: EXIF, JFIF, and basic JPEG for-
mats. As an example, the environment displays the patterns that should be applied
for learning the EXIF format. The complete case study is discussed in more detail in
[188].

Fig. 22. Modeling JPEG patterns/concerns in MADE
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Experiences

Comprehension patterns are used to represent a structured collection of model ele-
ments. Using MADE, developers are able to view only the artifact elements resulting
from the application of patterns. The whole original model can be obtained by apply-
ing all the patterns. A number of experiments have been conducted to determine the
customization capabilities of the MADE tool in the context of the case study. Figure
23 shows a comparison between the original model of the JPEG library structure
and several customized models. The customized models represent different concerns
in the library. Depending on the selected concern, the customization resulted in a
reduced number of model elements. For example, this number is reduced by 50%
when the user focuses on the JFIF-related features.

In the case of the JPEG library, it was relatively easy to identify the comprehen-
sion patterns based on the concern architecture views. However, in case the architec-
ture does not clearly separate different concerns, it might become harder to identify
the patterns. Comprehension patterns, on the other hand, are more useful when the
crosscutting concerns are not directly reflected by the architecture.
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Fig. 23. The original model versus several customized models

Concluding Remarks

In this section, concern architecture views are used to structure the comprehensibil-
ity of complex systems. Heterogeneous aspectual patterns are used to represent the
model elements relevant to a specific matter of interest in the system. These pat-
terns are exploited by the MADE tool offering a task-based learning environment.
For brevity, however, the detailed specification of the patterns is not shown and the
actual learning environment has not been discussed.

6 Related Work

In this section, we discuss work related to the notion of aspectual patterns and the
principle of separation of concerns. We then compare our methodology for MDD to
other approaches and tools.
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6.1 Aspectual Patterns

The term aspectual pattern used in this paper is inspired by the work on aspectual
components [274]. The constructs in both approaches are represented in terms of a
graph of nodes. In the case of [274], a graph node, called a participant, is a class in
the participant graph that should be bound to classes in other participant graphs or to
a concrete class graph. In the context of MADE, the graph nodes represent the pattern
roles. Roles may overlap with other roles and need to be bound to concrete elements.
The key difference between the two approaches is that aspectual components operate
at the programming level whereas aspectual patterns apply to different artifact types
expressed in different notations.

Glandrup and Aksit [149] independently use the term aspectual pattern in a
slightly different context. In their work, an aspectual pattern is a language-inde-
pendent extension for a pattern. The extension is used to describe the crosscutting
behavior of a pattern. Similar to the MADE approach, a role-model is used to rep-
resent how patterns are superimposed in the implementation and role constraints are
used for tracing and verification of patterns in the implementation. MADE can be
used to implement the concepts proposed in [149].

6.2 Separation of Concerns

The issue of separation of concerns has already been discussed in the context of
MDD. According to Kulkarni and Leddy [263], separation of concerns should be
dealt with at both the model and code levels. The authors propose a development
architecture that uses parameterized package abstractions to specify and compose
concerns at the model level. At the code level, these concerns are managed using
aspect-oriented programming. The MADE approach extends the ideas of [263] by
supporting separation of concerns at all model levels including documentation, test
code, and deployment information if possible. Instead of using different techniques
to represent concerns at different levels, the methodology presented in this work uses
a solution applicable to all levels. This leads to better traceability between models.

The idea of representing concerns within and across different artifacts has been
addressed in the work on multi-dimensional separation of concerns [419]. The au-
thors present a model for encapsulating concerns using so-called hyperslices. These
are entities independent of any artifact formalism. Aspectual patterns, presented in
this work, can be considered as a concrete realization of the hyperslice concept. Other
concepts such as subjects [62], contracts [208], aspects [124], and viewpoints [304]
also correspond to aspectual patterns. Subjects are class hierarchies representing a
particular viewpoint of a domain model. Contracts operate on object-oriented arti-
facts and are used to represent objects and their interactions separating them from
other interactions involving the same objects. Aspects, on the other hand, have been
mostly used to represent concerns at the programming level. Viewpoints, in turn, are
used to represent developers’ views at the requirements level. Different viewpoints
can be described using different notations. Compared to these concepts, aspectual
patterns are not bound to a specific artifact type and can be used to represent any
type of structural configuration including text document for example.
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6.3 MDD

MDA (Model-Driven Architecture) is a recent initiative by OMG for supporting
MDD principles. MDA defines three views of a system: a Computation Indepen-
dent Model (CIM), which is a representation of a system from a business viewpoint,
a Platform Independent Model (PIM), which is a representation of a system ignoring
platform (technology) specific details, and Platform Specific Model (PSM), which
is a model of a system that covers both platform independent information and de-
tails about a specific platform. OMG claims that this hierarchy offers better con-
trol for software development and brings up desired qualities such as portability,
interoperability, and reusability. In response to the needs of MDA, the QVT-Partners
have released a revised proposal for the OMG’s QVT RFP [165]. QVT stands for
Queries/Views/Transformations and represents a standardized transformation lan-
guage to allow UML models to be transformed into usable software. The MADE
approach solves some of the issues mentioned in the RFP. The aspectual pattern
concept can be used as a technical infrastructure for managing the various transfor-
mations between models [393].

Batory et al. treat models as a series of layered refinements [31]. Individual fea-
tures (reflecting different concerns) are composed together in a stepwise refinement
fashion to form complex models. Models can be programs or other non-code repre-
sentations. In order to support their concepts, the authors have developed a number of
tools for feature composition, called the AHEAD toolset. The toolset provides simi-
lar functions to those of the MADE tool. MADE, however, solves two problems not
otherwise addressed in [31]: tracing concerns in the generated models and checking
the validity of models against the architectural rules.

6.4 Tools

As MDA is considered as the most popular approach for MDD, MDD tools are gen-
erally referred to in the software community as MDA tools. A number of these tools
along with a detailed comparative evaluation are presented in [35]. Some of these
tools were not originally built for MDA but were later tuned to support its principles.
Similarly, the MADE pattern concept and pattern engine wereinitially implemented
for specializing Java-based frameworks. Most tools (if not all) do not implement all
the features of MDD (or MDA). Instead, each tool considers a restricted set of fea-
tures. MADE takes the same line: the tool supports separation of concerns across
models at different abstraction levels.

The Concern Manipulation Environment (CME) [64] shares similar ideas and
goals as those of MADE. The idea of CME is to offer end users an open suite of
tools for use in creating, manipulating, and evolving aspect-oriented software, across
the full software lifecycle. The environment helps in interoperating and integrating
different AOSD tools and paradigms and comes with an initial set of components.
For instance, the Concern Manager (ConMan) tool models software in terms of arbi-
trary concerns and their interrelationships. A strong similarity between MADE and
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ConMan is the support for a wide variety of concern structures and software decom-
positions – artifact types.

The most closely matching MDD tool related to the MADE approach is Rational
XDE [400]. Similarly to our approach, XDE includes a pattern engine that can be
used for model transformation. However, patterns are applied differently in MADE
than they are in XDE. In MADE, it is possible to apply a pattern in small increments
whereas an XDE pattern is only applied in full. The reason is that MADE treats each
role binding as a separate task. After an XDE pattern is applied, the integrity of the
pattern against the model is not automatically supervise; one has to revalidate the pat-
tern bindings each time the model changes. Also, XDE does not detect all violations
(e.g., a deleted generalization relationship between two classes) when the model is
manually edited. In MADE, the conformance to the architecture expressed by pat-
terns is supervised all the time and it is possible to detect all constraint violations in
the model against pattern specifications. When a violation is detected, a new task is
immediately generated informing the developer about the violation and suggesting
an automatic repair. Another significant difference is that aspectual patterns can have
roles representing non-software entities like text files and user input values or even
roles representing informal entities like reminders. Furthermore, in XDE, there is no
support for explicit modeling of concerns.

7 Conclusions

In this work, we have presented a tool infrastructure for model-driven development.
The methodology consists of a two-dimensional development approach that is based
on separating the different concerns in a software system and representing these con-
cerns at different abstraction levels. In order to implement the proposed tool con-
cept, we have used a structural entity called heterogeneous aspectual pattern. As tool
support, we have built a pattern-driven modeling environment known as MADE. In
MADE, a pattern is used to represent a concern cutting across multiple levels of
abstraction.

We have applied the MADE tool in a number of development scenarios. De-
pending on the nature of the problem, aspectual patterns provided support for man-
aging feature variability, documenting maintenance tasks, annotating framework spe-
cialization, and facilitating system comprehension. We have tested the MADE tool
against small illustrative examples and larger industrial-level case studies.

So far, experience indicates that the proposed task-based development environ-
ment realizes many of the principles of model-driven development, namely auto-
matic model derivation, controlled artifact generation, and traceability between mod-
els. We think that MADE can be further applied to support other software engineer-
ing activities such as architecture validation and software testing. Another direction
for future work is to generalize the aspectual pattern concept to represent other di-
mensions in software development. For example, a pattern can be used to encapsulate
different views of a given concern. Similarly, one concern may be represented at the
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same level of abstraction using different formalisms. Furthermore, one concern may
crosscut multiple software systems.
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Summary. Large-scale class diagrams are overwhelming to designers of software systems.
They expose the designer to a level of detail that is often inappropriate for basic understanding
and they complicate evolutionary changes in that the broader impact of changes is obscured
by details. This chapter presents an approach for the automated abstraction of class diagrams
that allows designers to “zoom out” of class diagrams to investigate and reason about their
bigger picture. The approach is based on a large number of abstraction rules that individually
are not very powerful but, when used together, abstract complex class diagrams quickly. The
technique was validated on over a dozen models where it was shown to be well suited for
model understanding, consistency checking, and reverse engineering.

1 Introduction

Refinement is often considered the natural course of software development where a
problem is evolved into a solution. Yet, the more a class diagram is refined, the more
there is a need to step back to investigate the bigger picture. We define abstraction
to be the reverse of refinement. Abstraction is a transformation process (p. 19 of this
book) that transforms lower-level class diagrams into higher-level ones, containing
fewer elements. Class abstraction has a number of vital uses. It allows designers to
(1) focus a class diagram on a particular problem or goal, omitting details that are
not needed in that context; and it allows designers to (2) zoom out of a class diagram
to investigate its entirety through a selected set of key elements.

In essence, abstraction is the simplification of models by removing details that are
deemed unimportant by the designer. This naturally improves the understanding of
class diagrams; supports reverse engineering by transforming low-level models into
higher-level ones; and supports consistency checking by comparing existing higher-
level models or architectures [106] with abstracted ones. The technique may also
help the designer in restructuring class diagrams (p. 199 of this book).

This chapter presents a technique for abstracting class diagrams [42] where de-
signers decide which classes to keep (i.e., called important classes) and which ones
to temporarily remove (called helper classes). Since it is not semantically correct to
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simply remove helper classes, the technique reinterprets the helper classes in terms
of their effect on the important classes. A designer may guide the abstraction to em-
phasize different goals or concerns (p. 139 of this book).

Our technique computes how the important classes would interact with one an-
other if their interaction were not obscured by the helper classes. The technique first
identifies the paths of helper classes that span between any two important classes.
These paths are then abstracted and replaced by single relationships that approximate
the meanings of the paths. The technique is supported through small yet numerous
abstraction rules that define how simple class/relationship paths are replaced by sin-
gle relationships. The application of abstraction rules is guided by the paths of helper
classes that span between any two important classes. These paths are abstracted indi-
vidually by applying the abstraction rules in the order in which classes are traversed
while one important class interacts with another (through these helper classes). This
problem is similar to the graph transformation discussed on p. 91 of this book but
avoids the pattern matching problem by dealing with strings of classes only.

We evaluated the technique on over a dozen real-world case studies ranging from
in-house developed models to third-party models. Most notably, we used the tech-
nique in connection with the Inter-Library Loan System [6], a part of a Satellite
Ground System [16], C2SADEL to UML integration [106], Video-On-Demand Sys-
tem, SDS Statechart Simulator [107], and other projects. The sizes of the models
ranged from several dozen to several hundred classes. The validation showed that
the technique produces correct abstractions 96% of the time. This chapter presents
the technique, originally introduced in [103], and then discusses two key extensions:

• The number of paths between important classes rises exponentially with the num-
ber of helper classes involved. We present an optimization that identifies in linear
time the actual classes and relationships used that reach between any two helper
classes, thus minimizing the path exploration problem.

• Complete paths are no longer computed before abstraction (i.e., due to the expo-
nential problem) but are stepwise abstracted while the paths are explored. This
avoids unnecessary path exploration because a partially non-abstractable path is
also not abstractable in its entirety.

Also, a new tool was built as an add-in to IBM Rational RoseTM. Rose is used
to draw class structures and, using Rose’s selection mechanism, a designer selects
important classes for abstraction. The abstraction results are visualized in Rose also.

2 Illustrative Example

For illustrative purposes, this chapter uses a simple UML class diagram [42] of a
Hotel Management System (HMS) that provides support for reservations, check-
in/check-out procedures, and associated financial transactions (see Fig. 1). The fig-
ure defines that a Person may have an Account and that a single account may belong
to multiple persons; it also defines that an account may have Transactions and trans-
actions may be either Expenses or Payments. Furthermore, it defines that a Guest
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is a Person who provides services for reservation and check-in/out procedures. Both
Room and Reservation are part of Hotel to indicate that instances of Room and Reser-
vation are unambiguously associated with particular instances of Hotel. Guest is also
related to Room and Reservation but less tightly via calling dependencies. These two
calling dependencies describe that an instance of Guest may stay at a Room of a
Hotel or may have several Reservations for any given Hotel.
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1..n

0..1

0..n+transactions 0..n

+account
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0..n

0..1

0..n

stays_at

Fig. 1. Illustrative class diagram of a Hotel Management System (HMS)

While this class diagram is simple enough for human comprehension, we have
worked with class diagrams that include thousands of classes and many more rela-
tionships. It is impossible for humans to comprehend such class structures and de-
signers resort to abstraction as a means of coping with this complexity. Abstraction
allows a designer to depict class structures from a particular point of view, concern,
requirement, or other form of interest.

Figure 2 depicts a couple abstractions of Fig. 1 that emphasize different sets
of important classes. For example, Fig. 2 (a) depicts the important classes Guest,
Payment, and Expense but it also depicts relationships among these three classes that
are not to be found in Fig. 1. These relationships are the abstract interpretation of the
hidden classes. Fig. 2(b) and (c) depict yet other abstractions that “slice” across the
classes in Fig. 1.

Clearly, there are a range of benefits associated with working with abstractions.
Each abstraction depicts a “slice” of the class diagram and is easier to understand.
Also, in this case, each abstraction relates to some form of requirement or system
goal and designers may intuitively benefit from seeing the HMS in terms of these
individual goals.
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Fig. 2. Abstractions of the HMS system

3 Simple Abstraction

The main goal of class abstraction is to hide information from a class diagram that is
perceived as not important. Since designers likely have different notions as to what
classes are important (i.e., reflecting different goals or problem), a class abstraction
technique needs to be guidable. Guidance may be as simple as a designer select-
ing model elements that are of particular interest; or guidance may be provided via
trace dependencies [104], [156]. In the following, we presume that such guidance is
available.

Abstraction replaces all unimportant helper classes in the class diagram such
that the resulting diagram depicts only the important classes and their computed
relationships. The main challenge of abstraction is to compute relationships out of the
helper classes. That is, if we simply hide the class Reservation and its relationships in
Fig. 1 then the class diagram loses the knowledge that a Guest may have a reservation
for a Hotel.

This section presents generic abstraction rules (patterns) that are based on the
UML notation for class diagrams [42]. Currently supported are class diagrams with
four types of relationships: generalization (inheritance), association (calling direc-
tion), aggregation (part-of), and dependency. The presented abstraction rules are
generic and applicable to a wide range of software projects. Designers are not re-
quired to extend or modify this rule set unless they wish to fine-tune it (e.g., domain
specific rules).

3.1 Semantic Rules

The class abstraction technique interprets the transitive meaning of classes and their
relationships. For example, the information that a Person may have an Account (asso-
ciation relationship in Fig. 1) implies a property of the class Person (class properties
are methods, attributes, or relationships). Furthermore, the information that Guest
is-a Person (inheritance) implies that Guest inherits all properties from Person. It
follows that Guest inherits the association to Account from Person implying that a
Guest may have zero or one Accounts. This knowledge of the transitive relationship
between Guest and Account (via Person) implies that the class Person (and its two
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relationships to Guest and Account) could be “collapsed” into a composite, more
abstract relationship linking Guest and Account directly. That composite relation-
ship should be of type “association” with the cardinality “0..1”. This example shows
a case where knowledge about the semantic properties of classes and relationships
makes it possible to eliminate a class and derive a slightly more abstract class dia-
gram. The example above can be seen as a class abstraction pattern of the following
form (cardinalities are discussed later):
{1} GeneralizationRight - Class - AssociationRight -> AssociationRight

We use relationship names post-fixed with either “Left” or “Right” to indicate
directionality. “GeneralizationRight - Class - AssociationRight” implies a general-
ization relationship terminating in the given class and an association relationship
originating from that same class. On the other hand, “GeneralizationRight - Class -
AssociationLeft” implies both generalization and association relationships terminat-
ing in the same class. Given that the above abstraction rule captures an observation
that is universally true (meaning true for all instances), this rule collapses any occur-
rence of the given pattern (before ->) into an occurrence of the implies pattern (after
->).

The transitive property of inheritance may also be used for other types of re-
lationships. For instance, Guest could also inherit other relationships from Person
(e.g., aggregation, dependency, or reverse association relationships – see rules 2–7
below).

{2} GeneralizationRight - Class - DependencyRight -> DependencyRight
{3} GeneralizationRight - Class - AssociationRight -> AssociationRight
{4} GeneralizationRight - Class - [Agg]Assoc.Right -> [Agg]Assoc.Right
{5} GeneralizationRight - Class - DependencyLeft -> DependencyLeft
{6} GeneralizationRight - Class - AssociationLeft -> AssociationLeft
{7} GeneralizationRight - Class - [Agg]Assoc.Left -> [Agg]Assoc.Left
{8} GeneralizationRight - Class - Association -> Association

UML class relationships are usually uni-directional requiring us to differenti-
ate “Left” from “Right”. The only exception is the association relationship which
may also be bi-directional. Rule 8 in the above block of patterns states that the bi-
directionality of the association is maintained if abstracted together with a general-
ization.

{9} GeneralizationRight - Class - GeneralizationRight -> GeneralizationRight

The previous assumption about inheritance is true for all relationship types ex-
cept for generalization relationships. On the one hand, it is valid to state that A inher-
its from C if A inherits from B and B inherits from C (see rule 9); however, if both
A and C inherit from B (A and C share a common parent) then transitively this does
not imply a relationship between A and C. It follows that no relationship exists be-
tween Payment and Expense in Fig. 1. Similar restrictions apply if two classes share
a common child (multiple inheritance). Rules 10 and 11 express these situations. The
symbol “Ø” is used to indicate that no abstraction is possible.

{10} GeneralizationRight - Class - GeneralizationLeft -> Ø
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{11} GeneralizationLeft - Class - GeneralizationRight -> Ø

To find more abstraction rules, consider the relationship between Guest and Ho-
tel in Fig. 1. The class diagram uses the class Reservation to define that a Guest
may have reservation for a Hotel. If a designer were to derive the transitive rela-
tionship from Guest to Hotel through Reservation then the helper class Reservation
and its relationships need to be replaced. In order to do that, it is again necessary to
investigate the transitive meaning of the to-be-replaced model elements. The class
diagram shows the class Hotel with an aggregation relationship from Reservation to
Hotel implying that Reservation is a part of Hotel. The class diagram also defines
that Guest has an association relationship to Reservation (instance of Guest may call
instance of Reservation). Given that Reservation is a part of Hotel implies that the
class Reservation is conceptually within the class Hotel. If, therefore, Guest depends
on Reservation and Reservation is part of Hotel then Guest must also depend on
Hotel. It follows that Guest relates to Hotel in the same manner as Guest relates to
Reservation. We thus have found another abstraction rule (rule 12). As before, the
same reasoning is applied to other relationships (e.g., rules 13–15):

{12} Association - Class - Association [Agg] -> Association
{13} AssociationRight - Class - Association [Agg] -> AssociationRight
{14} AssociationLeft - Class - AssociationLeft[Agg] -> AssociationLeft
{15} AssociationLeft[Agg] - Class - Assoc.Left[Agg] -> Assoc.Left[Agg]

Note that aggregations are UML associations with the aggregate property [Agg]
at one of their ends. The directionality of aggregations also has relevant semantic
meaning. For example, if Hotel were part of Reservation then one could not readily
apply the above patterns (e.g., as with the relationship between Person and Transac-
tion in Fig. 1).

3.2 Living with Ambiguous Class Definitions

The example of determining the relationship between Person and Transaction (Fig. 1)
introduces a new challenge. If one were to derive the transitive relationship between
Person and Transaction then one would need to abstract away the helper class Ac-
count and its relationships. Person currently has an association to Account and Trans-
action is part of Account (“AssociationRight - Class - [Agg]Association”). By Person
having an association to Account one could argue that Person relates to every part
of Account. Since Transaction is a part of Account it follows that Person must also
relate to Transaction. Although this argument is true in many situations, it is flawed
nonetheless. We make the assumption that by Person relating to Account it relates
to all its parts. It is, however, conceivable that Person relates to a subset of Account
only – a subset other than Transaction (i.e., mostly the case where classes provide
independent services, e.g., a math library).

Taking a more critical stance toward our abstraction rules, one may find that
this is not the first case of uncertainty. Consider again the very first rule 1 “Gener-
alizationRight - Class - AssociationRight -> AssociationRight”. Previously, it was
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stated that Guest has an association relationship to Account simply because it inher-
ited one from Person. To illustrate this reasoning more precisely, assume that Person
has a method “foo” that creates an instance of Account (“0..1” association between
Person and Account). Based on that assumption, surely, one can infer that Guest
also has a “0..1” association relationship to Account because Guest inherits method
“foo” from Person. Yet the flaw in this reasoning becomes apparent if Guest inherits
method “foo” but overwrites its body such that it no longer creates an instance of
class Account nor calls the overwritten method of the parent class. In such a case,
Guest would not inherit the “0..1” association relationship from Person to Account.
Abstracting the pattern “GeneralizationRight - Class - AssociationRight” is thus “As-
sociationRight” in some cases but not abstractable (no relationship) in other cases.

Observations such as this one naturally cause a dilemma. We are opposed to using
abstraction rules that are not 100% reliable but we encounter imprecise model defin-
itions that take away from our ability to reason precisely. We refer to these uncertain-
ties as “model ambiguities” because imprecise model definitions lead to potentially
different, ergo ambiguous, interpretations. A simple solution to this ambiguity prob-
lem is to create a semi-automated abstraction process that lets the designer decide
in case of uncertainty (e.g., [355]). Given the large and complex nature of models,
semi-automated abstraction becomes very costly. Indeed, it has been our observa-
tion that not computing time but human intervention constitutes key complexities
in activities such as model transformation and consistency checking. A similar un-
satisfactory solution to this problem is to make arbitrary decisions about the most
likely abstraction case and ignore less likely scenarios (e.g., ignore that the child
may overwrite method “foo” of the parent). This solution is unsatisfactory because it
makes our approach less reliable, producing potentially erroneous abstraction results
without the designer being aware of it.

UML class diagrams, like many other graphical description languages, are some-
what imprecise and ambiguous [227]. Indeed, we find that their relaxed nature often
encourages their use since designers are sometimes either unable or unwilling to
make precise design decisions. For instance, in UML it cannot be modeled whether
class A overwrites methods it inherits from class B. Although a lack of precision on
the part of UML, one may argue that it may not always be obvious during design
time when to overwrite methods. More recent research has shown that formal anno-
tations can improve the precision of UML (or notations alike) [117], [339], [285] but
their use is generally optional and left to the discretion of the designer.

Since the basic notation of UML is ambiguous, we take the stance that automated
abstraction needs to handle ambiguities. Our solution to the ambiguity problem is to
maintain the ambiguity during abstraction. For instance, if it is unknown whether
methods get overwritten during inheritance then we argue that “GeneralizationRight
- Class - AssociationRight” is “AssociationRight” in some cases and “Ø” (no re-
lationship) in other cases. This implies that abstract relationships indicated by our
approach may or may not factually exist. In cases where more complex abstractions
allow multiple abstract interpretations, our approach suggests all of them indicate
this uncertainty (ambiguity). Our solution has the advantage that no abstract results
are omitted although false positives may happen. Section 6 will show that the likeli-
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hood of false positives is very low (∼ 4%). Note that an alternative solution would be
to use a subset of abstraction rules that are known to be 100% correct. The problem
with this alternative solution is that only very few such rules exist and large-scale
abstraction would be rather ineffective as a consequence.

3.3 Other Abstraction Rules

Thus far we have focused on class patterns that use generalization and aggregation
relationships. In the following, we briefly discuss some abstraction patterns that use
association and dependency relationships (refer to [104] for more details).

An association relationship describes calling operations among classes. For in-
stance, Person having an association relationship to Account implies that a method
of Person may call methods of Account. If class A calls methods of class B and
class B calls methods of class C then, transitively, class A might also call methods
of class C (“AssociationRight - Class - AssociationRight -> AssociationRight”). In
case a uni-directional association is abstracted together with a bi-directional associ-
ation, the bi-directionality is replaced. For instance, if class A can only call class B
but classes B and C can call one another then, transitively, class A can still only call
class C but not the other way around (“AssociationRight - Class - Association ->
AssociationRight”).

Dependency relationships are used in UML to indicate a required presence of
classes. For instance, if class A depends on class B then class B must be present for
class A to function. The notion of a dependency is other than calling (association)
and is used to single out classes that are used as parameters in method calls (i.e., class
A does not call class B but class A has a method that expects an instance of class B
as a parameter). It is thus safe to state that “DependencyRight - Class - Dependen-
cyRight” must also abstract to a “DependencyRight”. Since dependencies can also
be inherited (generalization) and a dependency of a part also implies a dependency of
the whole (aggregation) the usual assumptions can be made about their abstraction.

3.4 The Complete List

To date, we have validated our approach in the context of UML class diagrams
and the relationship types: generalization, association, dependency, and aggrega-
tion. Considering directionality, this implies eight uni-directional relationship types
such as “GeneralizationRight” or “AggregationLeft” plus three bi-directional rela-
tionship types “Association”, “[Agg]Association”, and “Association[Agg]”. Allto-
gether, those relationships may form 121 different patterns (11*11). Table 1 gives the
complete list of abstraction patterns as they are currently defined in our approach.

It is interesting to observe that 29 patterns cannot be abstracted whereas the re-
maining 92 patterns have abstract counterparts. Given that it should not matter from
what direction a pattern is viewed (or abstracted) it follows that mirror images of
abstraction patterns must have the same values. For instance, the pattern “Gener-
alizationRight - Class - GeneralizationRight” (rule 1) is equivalent to the pattern
“GeneralizationLeft - Class - GeneralizationLeft” (rule 16).
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Table 1. Complete list of abstraction rules for class diagrams

1. GeneralizationRight - Class - GeneralizationRight -> GeneralizationRight
2. GeneralizationRight - Class - DependencyRight -> DependencyRight
3. GeneralizationRight - Class - AssociationRight -> AssociationRight
4. GeneralizationRight - Class - [Agg]AssociationRight -> [Agg]AssociationRight
5. GeneralizationRight - Class - GeneralizationLeft -> Ø
6. GeneralizationRight - Class - DependencyLeft -> DependencyLeft
7. GeneralizationRight - Class - AssociationLeft -> AssociationLeft
8. GeneralizationRight - Class - AssociationLeft[Agg] -> AssociationLeft[Agg]
9. GeneralizationRight - Class - Association -> Association
10. GeneralizationRight - Class - [Agg]Association -> [Agg]Association
11. GeneralizationRight - Class - Association[Agg] -> Association[Agg]
12. GeneralizationLeft - Class - GeneralizationRight - Class -> Ø
13. GeneralizationLeft - Class - DependencyRight -> Ø
14. GeneralizationLeft - Class - AssociationRight -> Ø
15. GeneralizationLeft - Class - [Agg]AssociationRight -> Ø
16. GeneralizationLeft - Class - GeneralizationLeft -> GeneralizationLeft
17. GeneralizationLeft - Class - DependencyLeft -> DependencyLeft
18. GeneralizationLeft - Class - AssociationLeft -> AssociationLeft
19. GeneralizationLeft - Class - AssociationLeft[Agg] -> AssociationLeft[Agg]
20. GeneralizationLeft - Class - Association -> AssociationLeft
21. GeneralizationLeft - Class - [Agg]Association -> AssociationLeft
22. GeneralizationLeft - Class - Association[Agg] -> AssociationLeft[Agg]
23. DependencyRight - Class - GeneralizationRight -> DependencyRight
24. DependencyRight - Class - DependencyRight -> DependencyRight
25. DependencyRight - Class - AssociationRight -> DependencyRight
26. DependencyRight - Class - [Agg]AssociationRight -> DependencyRight
27. DependencyRight - Class - GeneralizationLeft -> DependencyRight
28. DependencyRight - Class - DependencyLeft -> Ø
29. DependencyRight - Class - AssociationLeft -> Ø
30. DependencyRight - Class - AssociationLeft[Agg] -> Ø
31. DependencyRight - Class - Association -> DependencyRight
32. DependencyRight - Class - [Agg]Association -> DependencyRight
33. DependencyRight - Class - Association[Agg] -> DependencyRight
34. DependencyLeft - Class - GeneralizationRight -> Ø
35. DependencyLeft - Class - DependencyRight -> Ø
36. DependencyLeft - Class - AssociationRight -> Ø
37. DependencyLeft - Class - [Agg]AssociationRight -> Ø
38. DependencyLeft - Class - GeneralizationLeft -> DependencyLeft
39. DependencyLeft - Class - DependencyLeft -> DependencyLeft
40. DependencyLeft - Class - AssociationLeft -> DependencyLeft
41. DependencyLeft - Class - AssociationLeft[Agg] -> DependencyLeft
42. DependencyLeft - Class - Association -> DependencyLeft
43. DependencyLeft - Class - [Agg]Association -> DependencyLeft
44. DependencyLeft - Class - Association[Agg] -> DependencyLeft
45. AssociationRight - Class - GeneralizationRight -> AssociationRight
46. AssociationRight - Class - DependencyRight -> DependencyRight
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47. AssociationRight - Class - AssociationRight -> AssociationRight
48. AssociationRight - Class - [Agg]AssociationRight -> AssociationRight
49. AssociationRight - Class - GeneralizationLeft -> AssociationRight
50. AssociationRight - Class - DependencyLeft -> Ø
51. AssociationRight - Class - AssociationLeft -> Ø
52. AssociationRight - Class - AssociationLeft[Agg] -> Ø
53. AssociationRight - Class - Association -> AssociationRight
54. AssociationRight - Class - [Agg]Association -> AssociationRight
55. AssociationRight - Class - Association[Agg] -> AssociationRight
56. AssociationLeft - Class - GeneralizationRight -> Ø
57. AssociationLeft - Class - DependencyRight -> Ø
58. AssociationLeft - Class - AssociationRight -> Ø
59. AssociationLeft - Class - [Agg]AssociationRight -> Ø
60. AssociationLeft - Class - GeneralizationLeft -> AssociationLeft
61. AssociationLeft - Class - DependencyLeft -> DependencyLeft
62. AssociationLeft - Class - AssociationLeft -> AssociationLeft
63. AssociationLeft - Class - AssociationLeft[Agg] -> AssociationLeft
64. AssociationLeft - Class - Association -> AssociationLeft
65. AssociationLeft - Class - [Agg]Association -> AssociationLeft
66. AssociationLeft - Class - Association[Agg] -> AssociationLeft
67. [Agg]AssociationRight - Class - GeneralizationRight -> [Agg]AssociationRight
68. [Agg]AssociationRight - Class - DependencyRight -> DependencyRight
69. [Agg]AssociationRight - Class - AssociationRight -> AssociationRight
70. [Agg]AssociationRight - Class - [Agg]AssociationRight -> [Agg]AssociatRight
71. [Agg]AssociationRight - Class - GeneralizationLeft -> [Agg]AssociationRight
72. [Agg]AssociationRight - Class - DependencyLeft -> Ø
73. [Agg]AssociationRight - Class - AssociationLeft -> Ø
74. [Agg]AssociationRight - Class - AssociationLeft[Agg] -> Ø
75. [Agg]AssociationRight - Class - Association -> AssociationRight
76. [Agg]AssociationRight - Class - [Agg]Association -> [Agg]AssociationRight
77. [Agg]AssociationRight - Class - Association[Agg] -> AssociationRight
78. AssociationLeft[Agg] - Class - GeneralizationRight -> Ø
79. AssociationLeft[Agg] - Class - DependencyRight -> Ø
80. AssociationLeft[Agg] - Class - AssociationRight -> Ø
81. AssociationLeft[Agg] - Class - [Agg]AssociationRight -> Ø
82. AssociationLeft[Agg] - Class - GeneralizationLeft -> AssociationLeft[Agg]
83. AssociationLeft[Agg] - Class - DependencyLeft -> DependencyLeft
84. AssociationLeft[Agg] - Class - AssociationLeft -> AssociationLeft
85. AssociationLeft[Agg] - Class - AssociationLeft[Agg] -> AssociationLeft[Agg]
86. AssociationLeft[Agg] - Class - Association -> AssociationLeft
87. AssociationLeft[Agg] - Class - [Agg]Association -> AssociationLeft
88. AssociationLeft[Agg] - Class - Association[Agg] -> AssociationLeft[Agg]
89. [Agg]Association - Class - GeneralizationRight -> [Agg]AssociationRight
90. [Agg]Association - Class - DependencyRight -> DependencyRight
91. [Agg]Association - Class - AssociationRight -> AssociationRight
92. [Agg]Association - Class - [Agg]AssociationRight -> [Agg]AssociationRight
93. [Agg]Association - Class - GeneralizationLeft -> [Agg]Association
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94. [Agg]Association - Class - DependencyLeft -> DependencyLeft
95. [Agg]Association - Class - AssociationLeft -> AssociationLeft
96. [Agg]Association - Class - AssociationLeft[Agg] -> AssociationLeft
97. [Agg]Association - Class - Association -> Association
98. [Agg]Association - Class - [Agg]Association -> [Agg]Association
99. [Agg]Association - Class - Association[Agg] -> Association
100. Association[Agg] - Class - GeneralizationRight -> AssociationRight
101. Association[Agg] - Class - DependencyRight -> DependencyRight
102. Association[Agg] - Class - AssociationRight -> AssociationRight
103. Association[Agg] - Class - [Agg]AssociationRight -> AssociationRight
104. Association[Agg] - Class - GeneralizationLeft -> Association[Agg]
105. Association[Agg] - Class - DependencyLeft -> DependencyLeft
106. Association[Agg] - Class - AssociationLeft -> AssociationLeft
107. Association[Agg] - Class - AssociationLeft[Agg] -> AssociationLeft[Agg]
108. Association[Agg] - Class - Association -> Association
109. Association[Agg] - Class - [Agg]Association -> Association
110. Association[Agg] - Class - Association[Agg] -> Association[Agg]
111. Association - Class - GeneralizationRight -> AssociationRight
112. Association - Class - DependencyRight -> DependencyRight
113. Association - Class - AssociationRight -> AssociationRight
114. Association - Class - [Agg]AssociationRight -> AssociationRight
115. Association - Class - GeneralizationLeft -> Association
116. Association - Class - DependencyLeft -> DependencyLeft
117. Association - Class - AssociationLeft -> AssociationLeft
118. Association - Class - AssociationLeft[Agg] -> AssociationLeft
119. Association - Class - Association -> Association
120. Association - Class - [Agg]Association -> Association
121. Association - Class - Association[Agg] -> Association

4 Composite Abstraction

The previous section discussed abstraction in the context of numerous simple rules.
These abstraction rules are not very powerful but this section demonstrates how com-
plex class diagrams are abstracted using those rules.

4.1 Path Abstraction

We refer to a sequence of helper classes between two important classes as a path.
Abstraction rules are serialized to abstract a path of classes. Fig. 3 (top) depicts a
path from Guest to Payment, taken from Fig. 1. If it is of interest to know the tran-
sitive relationship between Guest and Payment then the abstraction rules in Table 1
have to be applied in sequence to eliminate the helper classes Person, Account, and
Transaction.

The abstraction rules are applied in the order in which the classes are visited.
That is, if Guest calls Transaction then this call first passes through Person, then
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Guest PaymentPerson Account Transaction

Guest PaymentTransactionAccount

PaymentGuest Transaction

PaymentGuest

rule 3

rule 54

rule 49

Fig. 3. Abstraction of a path of classes

through Account, next through Transaction, before, finally, reaching Payment. Thus,
rule 3 (Table 1) is applied first to replace Person (and its relationships to Guest and
Account); rule 54 is applied next to replace Account, and rule 49 is applied finally
to replace Transaction. As a result, we discover a transitive association relationship
between Guest and Payment. Of course, the path could also be explored in reverse
from Payment to Guest.

The abstraction of a path is different from [103] in that no longer are all path
combinations explored. This was previously done to ensure that all rules are treated
equally during abstraction. For example, the problem in Fig. 3 could have also been
resolved by applying the rules in a different order. That is, rule 54 could have been
applied first (replacing Account), rule 3 next (replacing Person), and rule 49 finally
(replacing Transaction). In this particular case, the outcome of the abstraction would
have been identical. While there is no guarantee that all combinations of all rules
produce identical abstraction results, we have not encountered a case where it would.
Furthermore, given that it is computationally expensive to explore all combinations
of rules, the technique now resolves a path in the order it is traversed.

4.2 Paths among Neighboring Important Classes

A path is a sequence of helper classes between two important classes. A path should
not contain important classes. Consider, for example, that a designer is interested in
the relationships among the important classes Hotel, Guest, Payment, and Expense,
ignoring helper classes such as Account, Reservation, or Person. If one were to in-
vestigate all paths among Hotel, Guest, Payment, and Expense then one would find
nine (Fig. 4 (top)): one path between Payment and Expense, one path between Pay-
ment and Guest, one path between Expense and Guest, two paths between Hotel
and Guest, two paths between Hotel and Payment, and two paths between Hotel and
Expense.

All nine paths reflect ways for the important classes Hotel, Guest, Payment, and
Expense to interact with one another. However, it is not desired to know about all pos-
sible transitive relationships among all classes of the Hotel–Guest–Payment–Expense
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Fig. 4. All transitive relationships (top) and transitive relationships of neighboring classes
(bottom)

set. Instead it is desired to know about transitive relationships between neighboring
important classes only. Take for instance the path Hotel–Reservation–Guest–Person–
Account–Transaction–Expense in Fig. 4 (top). Abstracting this path reveals a uni-
directional association from Hotel to Expense. However, this path also eliminates the
important class Guest because it is part of this path between Hotel and Expense. This
is invalid here since one should not declare Guest an important class for abstraction
but at the same time eliminate it in some abstraction path. This is invalid because the
abstract relationship between Hotel & Expense would be redundant with other ab-
stract relationships between Hotel & Guest and Guest & Expense where the former
relationship (Hotel–Expense) is an abstraction of the latter two relationships. That
is, Hotel is not capable of calling Expense directly but requires Guest. It is thus suf-
ficient to show that Hotel calls Guest and that Guest calls Expense. Fig. 4 (bottom)
depicts the subset of paths from Figure 4 (top) that do not contain any important
classes.
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This restriction of paths is also important for computational scalability. That
is, the number of paths would increase quadratically with the number of important
classes. Yet, if one is not interested in all transitive relationships among all important
classes but only the transitive relationships among neighboring important classes,
then this significantly reduces the number of paths (i.e., the number of neighboring
classes is a relative constant that is not affected by the number of important classes).
Usability is also increased because the number of abstraction results is reduced by
the same degree.

4.3 Abstracting Cardinalities

The rules in Table 1 emphasize the syntactic nature of “boxes” and “arrows” in class
diagrams. However, class diagrams consist of more than just boxes and arrows. Fig-
ure 5 (left), depicts the familiar class diagram of the HMS showing the relationships
among Hotel, Guest, Reservation, and Room. Additionally, the figure depicts the
cardinalities among those classes as they were originally introduced in Fig. 1. For
example, it shows that a Guest may stay at zero or one Rooms and may have zero,
one, or more Reservations. Also, a Hotel may have zero, one, or many Rooms and
each Room belongs to exactly one Hotel (the diamond head of the aggregation rela-
tionship has cardinality one unless defined otherwise).

Hotel

0..n0..n

0..n

1..n

0..1

0..n0..n

Hotel

Guest

0..*0..1

0..*

ReservationRoom

Guest

0..*

Fig. 5. Abstracting cardinalities

Figure 5 (right) shows that the Hotel–Room–Reservation–Guest class structure
is abstractable into two relationships between the important classes Guest and Hotel:
a bi-directional association and a uni-directional association (Fig. 5 (right)). These
two relationships are based on the two distinct paths that exist between Guest and
Hotel. Since an instance of Guest interacts with zero or one instances of Room and,
in turn, an instance of Room is always associated with exactly one instance of Hotel
(semantic implication of aggregation relationship), a Guest may stay at zero or one
Hotels at any given point in time. This is a transitive property. Since associations and
aggregations have two ends, there are always exactly two cardinalities one has to
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consider. The second cardinality investigates the reverse where an instance of Hotel
may interact with zero, one, or more instances of Room and an instance of Room
may interact with zero, one, or more instances of Guest. This implies that multiple
guests may stay at any given Hotel room. Other cardinality scenarios follow the same
pattern and are described in more detail in [103].

4.4 Path Exploration

Section 4.2 discussed how important classes restrict the exploration of paths in that
only paths among neighboring important classes are considered. In spite of this re-
striction, path exploration is still a computationally expensive activity as there are
often many paths between any two neighboring important classes. We address this
problem in the form of two optimizations that avoid unnecessary path explorations.
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Fig. 6. Helper classes and paths between important classes

The first optimization computes in advance what helper classes (and their rela-
tionships) are part of paths between two given important classes. For example, if
it is desired to understand the transitive relationships among Guest, Payment, and
Expense (Fig. 6) then it is not necessary to explore paths that involve classes such
as Room or Hotel. Yet, the path exploration algorithm in [103] explored paths re-
cursively without knowing, in advance, what paths would succeed in connecting the
desired important classes. The technique now computes in linear time what classes
span between desired important classes. In the case of the example, the technique
computes that only the classes Person, Account, and Transaction bridge the impor-
tant classes Guest, Payment, and Expense. All other helper classes are ignored during
the path exploration.

The second optimization limits the exploration of paths by continuously evalu-
ating the abstractability of paths. That is, there are potentially many paths between
any two helper classes but most of them are not abstractable. It is thus not neces-
sary to explore a path in its entirety if a partial exploration and abstraction of that
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path already determines that it is not abstractable (i.e., if a path is not abstractable
partially then it is also not abstractable in its entirety). This optimization avoids the
exploration of subsequent path alternatives not yet explored.

The two optimizations discussed in this section minimize the path exploration
problem in that only those helper classes are considered that yield useful paths and
paths are only abstracted for as long as they are abstractable.

5 Automation and Tool Support

The abstraction technique requires a designer to guide the abstraction by defining im-
portant classes in a class diagram. The technique then replaces the remaining helper
classes with transitive relationships. The tool support fully automates the replace-
ment of helper classes. This reduces manual effort and makes abstraction results
reproducible. This section describes the tool we developed.

Our approach was co-developed with Rational Software [105] who developed
a tool called Rose/Architect (construction of Rose/Architect was sub-contracted to
Ensemble Systems by Rational Corporation). Since then, the approach was extended
and the author developed another non-proprietary tool. The new tool was integrated
with IBM Rational RoseTMfor the purpose of creating and modifying diagrams. De-
signers mark important classes through Rose’s selection mechanism. The abstraction
results are then visualized in Rose. Figure 7 depicts two screenshots of the tool. The
top of Fig. 7 shows a class diagram of the HMS as defined in Rose. The bottom of
Fig. 7 shows Rose visualizing an abstracted class diagram with the important classes
Hotel, Guest, Payment, and Expense. The abstraction tool was integrated with Rose
using an integration framework developed at Teknowledge Corporation for integrat-
ing software components with COTS (Commercial Off-The-Shelf) components.

6 Validation

This section discusses the validity of our approach in terms of its correctness and
manual overhead.

6.1 Validity of Abstraction Rules and Algorithm

We evaluated the validity of abstraction results on a representative set of 12 models.
Many of the models were built by third parties. Some models were implemented into
systems although we did not have access to some of the implemented systems. Some
models we reverse engineered from the implemented system. The sizes of the models
varied substantially, with up to several hundred classes.

In total, considering the large number of models, experiments, and model el-
ements involved, we found that our technique produces reliable results 96% of the
time (only 4% false positives). For about two-thirds of the experiments, our approach
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Fig. 7. Class abstraction tool integrated with IBM Rational RoseTM

did not produce any false positives. For the remaining one-third, our approach pro-
duced less than 10% bad results – with one exception: in one case study, our ap-
proach produced 40% incorrect results. This is a very high number, but given the
small size of the model (26 classes), higher fluctuations are to be expected. Although
our approach produces highly reliable results most of the time, all results have to be
investigated to reason about their correctness. Section 6.2 (manual versus automated
abstraction) discusses that it is significantly cheaper to manually inspect abstraction
results produced by our approach instead of abstracting manually.

Our rules are tailored in a fashion that prevents false negatives. This implies that
the lack of an abstraction truly means that no abstraction exists. Because of this, our
abstraction technique has 100% sensitivity. Note that sensitivity refers to the propor-
tion of paths that are abstractable that have positive abstraction results. It is computed
as (True Positives)/(True Positives+False Negatives). Our abstraction technique also
has 99.3% specificity. Specificity refers to the proportion of paths that are not ab-
stractable that have no abstraction results: (True Negatives)/(True Negatives+False
Positives). True negatives were computed by subtracting abstracted paths from all
investigated paths. For more details about these metrics, refer to [103].

6.2 Manual Abstraction Versus Automation

Despite our approach’s preference to err in favor of abstracting too much instead
of too little, it produces mostly correct abstraction results. This has the advantages
that the designer does not get overwhelmed with too much (wrong) information and
consequently incorrect abstraction results can be identified with reasonable effort.
We observed during validation that our approach produced a total of 418 abstract
relationships among 170 abstract classes (ratio of 2.45 relationships per class). This
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is not much higher than the ratio among original relationships and original classes,
which is 1.83.

The low number of false positives produced by our approach also implies that it
is significantly easier to validate abstraction results produced by our approach than
having to abstract paths manually. It still requires a human decision maker to make
the final judgment on the correctness of the abstraction result, but our approach re-
lieves the human designer from the extremely time consuming task of inferring ab-
stract relationships among all class combinations and potential paths. We observed
that there were 21024 potential dependencies among all 170 abstract classes of all
18 experiments; but there were only 258 transitive relationships. It follows that there
were almost 100 times more dependencies to investigate than transitive relationships
to validate. Even if tool support is provided that automatically determines all paths
among abstract classes, we found that there were 2374 different paths among the
170 abstract classes. Most of those paths were not abstractable and thus there was
still a tenfold benefit in manually validating the abstraction results versus manually
abstracting those paths. This data showed clearly that it is significantly better to in-
vestigate the abstracted diagrams without having to do all the abstraction work. The
task of validating abstraction results is additionally simplified through trace infor-
mation (mapping) between abstraction results and their original input. This makes
it straightforward for designers to trace back particular abstraction results to investi-
gate their origin and consequently their correctness. As for the actual effort required
for validating results, this is entirely dependent on the designer’s familiarity with the
models. We found that if a designer is very familiar with a model then it was gener-
ally straightforward and fast to judge the correctness of abstraction results. For more
details about these metrics, consult [103].

7 Related Work

Many techniques have been proposed to aid the understanding of complex class di-
agrams. There are reading techniques such as inspection [118] that use group effort
to cope with complexity. Most of these techniques are manual and involve high ef-
fort and staff time. Using multiple views is an effective form of separating concerns
[419]. Class diagrams can be subdivided into multiple views [14], [125], [142] where
partial and potentially overlapping portions of the diagram are depicted. The sum of
all views (diagrams) is the complete class diagram itself. Multiple views make use
of the fact that one does not need access to all classes to understand a particular con-
cern. Although multiple views can make classes belonging to individual concerns
more understandable, they generally do not project a high-level, simplified abstrac-
tion of the overall class diagram.

Lieberherr et al. [275] defined class transformation methods to capture evolution.
They argue that class evolution is inevitable and results in new class models that,
preferably, should be as consistent as possible with earlier versions. Although one
could argue that evolution is a form of refinement, we take a more narrow stance. For
us, refinement has to maintain consistency within a given model. Their work thus
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addresses evolutionary “refinement” and “consistency issues” that are considered
outside the scope of this chapter. Nonetheless, one can envision a strong need for our
approach to be combined with theirs so that model refinement and abstraction can be
complemented with model evolution.

Fahmy and Holt [119] examined structural aspects of models in the form of graph
rewriting. In their work, they define rules on how to transform graph patterns. They
do not single out class diagrams; however, their work is applicable since class dia-
grams can be seen as graphs containing vertices (classes) and edges (relationships).
They also define transformation rules for “lifting” and “hiding interior/exterior”
which could be seen as analogous to our approach. Indeed, graph rewriting could
provide a more generic framework for our work and we are considering the integra-
tion of some of their ideas; however, currently they do not define class abstraction
rules at the level of detail we do, nor do they define an algorithm that can avoid prob-
lems of race conditions. Furthermore, their transformation algorithm is computation-
ally very expensive since they can define complex patterns and anti-patterns. Instead,
our approach relies on relatively simple patterns that can be abstracted quickly.

The work of Schürr et al. [383] is similar to Fahmy and Holt’s. They also propose
a graph rewriting approach called PROGRES with similar limitations. However, an
interesting feature of PROGRES is the improved performance of pattern matching
which they recognized as being a severe problem. They propose a heuristic-based
approach that optimizes the use of a limited set of graph rewrite rules to achieve
faster performance. The limitation of their approach is that it works best on small
sets of rules. We took an alternative approach with a large number of graph rewrite
rules (abstraction rules) but only very simple rule patterns (string of relationships).
Our pattern matching approach is thus as simple and as efficient as string matching.
As such, we see their work as an interesting alternative in dealing with the computa-
tionally expensive problem of pattern matching.

Snelting and Tip [398] devised a technique in restructuring class hierarchies by
investigating how classes are used by applications. In a form they abstract the essence
of classes by creating perspectives of class hierarchies as relevant to individual ap-
plications. They then combine those individual perspectives to yield a better class
hierarchy. Although their work reinterprets class diagrams (hierarchies) it cannot be
used to reason about abstract interdependencies among classes. It is, however, a good
example that class hierarchies (or diagrams) are ambiguous and information within
them (i.e., methods) can be moved around without destroying behavioral consistency.

Racz and Koskimies [355] created an approach to class abstraction that is prob-
ably the closest to ours. They also recognized the powerful but simple nature of
abstracting relationships with classes into abstract relationships. However, they only
defined a small set of abstraction rules and they did not investigate the issue of path
abstraction. As a result, they did not devise an automatable abstraction technique but
instead developed a tool for semi-automated use. In Sect. 6, we pointed out the dis-
advantages of semi-automated abstraction on large-scale class diagrams. Irrespective
of the drawbacks of their approach, we see their work as a confirmation of the valid-
ity of our abstraction technique because like us they acknowledge the usefulness of
abstracting class patterns based on the transitive meaning of relationships.
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Our abstraction technique is conceptually related to transformation techniques
such as Sequence to Statechart transformation [258], [380], Collaboration to State-
chart transformation [248], and Sequence to Class transformation [430]. All these
approaches recognized the fact that model transformation in general can be done
without the use of intermediate, third-party language. For instance, [258] describes
an approach for combining sequence diagrams into statechart diagrams directly with-
out creating the overhead of using an additional languages. These works demonstrate
that it is possible to define precise, formal transformations using informal languages
(UML diagrams) as input and generating other informal languages as output. Our
approach is also well defined and formal and like their approaches we avoided using
third-party languages to represent UML although such languages exist.

8 Conclusion

This chapter presented an approach for the automated abstraction of class diagrams.
The approach investigated the semantic meaning of paths of classes to infer transi-
tive properties. Although our abstraction rules are primitive in form, they are rich
enough in number to abstract large-scale class diagrams. To date we have validated
the technique and its rules on numerous third-party applications and models with up
to several hundred model elements. We showed that our technique scales and pro-
duces correct results most of the time. We demonstrated various forms of ambiguities
and showed that there are ways of living with them – even preserving them during
transformation.

Our abstraction approach is fully tool supported and integrated with IBM Ratio-
nal RoseTM. We believe our abstraction technique to be well suited for model under-
standing, reverse engineering, and consistency checking. During model understand-
ing, our technique provides a lightweight, fast, and easy to use method for “zooming
out” of a model for inspection (e.g., whenever the model changes). For reverse en-
gineering, our technique helps in creating higher-level interpretations of implemen-
tation classes and their relationships. And for consistency checking, our approach
makes a lower-level class diagram easier to compare with existing higher-level ones.
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Summary. Refactoring is an essential approach toward improving the internal structure of
a software system while preserving its external behavior. Traditional refactoring techniques
have focused on the implementation stage, with source code as the primary artifact of the
refactoring process. However, a recent trend is to apply the concepts of refactoring to higher
levels of abstraction. Consequently, model refactoring is emerging as a desirable means to
improve design models using behavior-preserving transformations.

This chapter describes a practical approach toward implementing model-level refactoring.
A model transformation engine has been developed and provides a generalized underlying
refactoring tool for manipulating models. A model refactoring browser is integrated within
the model transformation engine to enable the automation and customization of various refac-
toring methods for either generic models or domain-specific models. A result of this work is
the capability to perform model refactoring rapidly using user-specified transformation rules.

1 Introduction

Refactoring was first proposed by Opdyke [335] in 1992 as a methodology for re-
structuring programs. Over the past decade, refactoring has grown into a disciplined
technique to improve the maintainability of software systems by changing the in-
ternal structure of software without altering its external behavioral properties. With
proper tool support, refactoring can be an efficient and effective way to help improve
the design of software, make software easier to understand, and to assist in identi-
fying errors [131]. In addition, lightweight development methods, such as eXtreme
Programming (XP) [405], have promoted refactoring as a core development practice.

The majority of previous research into refactoring is focused at the code level
(i.e., the implementation and maintenance phases during the software life-cycle), and
less concerned with the earlier stages of design. It is well known that errors made
early in the design process, but discovered late, are much harder to fix than errors
made and found earlier in the development process [372]. Thus, a strong need exists
for tools that enable designers to discover errors early in development, and to better
modularize designs captured in models, not just code [33]. Applying refactoring as
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early as possible during the software life-cycle can improve the quality of design
and reduce the complexity and cost in successive development phases. According
to a recent survey on software refactoring [291], several researchers have begun to
investigate refactoring at the design level, specifically in terms of UML models. The
concept of model refactoring is emerging as a desirable means to improve design
models using behavior-preserving transformations.

The main contribution of this chapter is to describe a customizable environment
for performing model-level refactoring. In our previous work, a model transforma-
tion tool was developed to provide a generalized underlying engine for manipulat-
ing models. A new model refactoring browser has been built on top of the trans-
formation engine to enable the automation and customization of various refactoring
methods for either generic models or domain-specific models. The work described
in this chapter differs from previous model refactoring research because it provides
the ability for users to create their own rules that specify the effect of a refactoring.
A set of pre-existing refactoring rules can be applied to a generic model, or a user
may customize refactoring rules that pertain to a particular domain-specific modeling
language.

The chapter is structured as follows. Section 2 gives an overview of the modeling
tool and transformation engine. The model refactoring browser is introduced in Sect.
3. In Sects. 4 and 5, examples are presented to illustrate generic and domain-specific
model refactorings. The chapter concludes with a section on related and future work.

2 Background: Model Transformation with GME and C-SAW

This section briefly introduces the modeling tool and transformation engine that are
used throughout the remainder of the chapter. The overview provides references and
links to additional details describing specific features and use of the tools. The partic-
ular focus of the chapter is to extend the concepts of this section in order to provide
a generic model refactoring tool.

2.1 The Generic Modeling Environment

Model-integrated computing (MIC) [414] has been refined at Vanderbilt University
over the past decade to assist with the creation and synthesis of computer-based sys-
tems. In MIC, multiple-view models are used to capture the information relevant
to the system, represent the dependencies and constraints among different modeling
views, and automatically synthesize different kinds of software artifacts. As a vari-
ant of the Model-Driven Architecture (MDA) [289, 135], a key application area for
MIC is those domains that tightly integrate the computational structure of a system
and its physical configuration (i.e., embedded system domains such as avionics and
automotive software). In such systems, MIC has been shown to be a powerful tool
for providing adaptability in frequently changing environments.

A specific instance of the type of domain-specific modeling supported by MIC is
implemented using the Generic Modeling Environment (GME) [128]. The GME is
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a UML-based meta-modeling environment that can be configured and adapted from
meta-level specifications (called the modeling paradigm) that describe the domain.
When using the GME, a modeling paradigm is loaded into the tool to define an
environment containing all of the modeling elements and valid relationships that can
be constructed in a specific domain [269]. Model interpreters supply an ability to
generate other software artifacts (e.g., code or simulation scripts) from the models.
The GME provides a meta-environment for constructing system and software models
using notations that are familiar to the modeler. It was developed before the OMG
Meta-Object Facility (MOF) [135] existed, but an MOF-compliant model editor is
near completion [111].

2.2 Constraint-Specification Aspect Weaver

The Constraint-Specification Aspect Weaver (C-SAW) is a model transformation
engine implemented as a plugin component for GME. C-SAW unites the ideas of
aspect-oriented software development (AOSD) [251] with MIC to provide better
modularization of model properties that are cross-cutting throughout multiple layers
of a model [160]. C-SAW offers the ability to explore numerous modeling scenarios
by considering cross-cutting modeling concerns as aspects that can be rapidly in-
serted and removed from a model. This permits a modeler to make changes more eas-
ily to the base model without manually visiting multiple locations in the model. Until
C-SAW, these transformations and translations have largely been performed manu-
ally in practice. Additional information about C-SAW, including software downloads
and video demos, is available at: http://www.cis.uab.edu/gray/Research/C-SAW.

The C-SAW model transformation engine is depicted in Fig. 1. In this figure, a
source model serves as input to the model weaver, and the output is a target model
that has a cross-cutting concern dispersed across the original base. To perform this
process, the transformation specifications describe the binding and parametrization
of strategies to specific entities in a model. A transformation specification is com-
posed of an aspect and several strategies. An aspect is the starting point of a trans-
formation process. A strategy is used to specify elements of computation and the
application of specific properties to the model entities.

The specification aspects and strategies are based on a special underlying lan-
guage, called the Embedded Constraint Language (ECL) [161]. ECL is an extension
of the Object Constraint Language (OCL) [457], and provides many of the common
features of OCL, such as arithmetic operators, logical operators, and numerous op-
erators on collections (e.g., size, forAll, exists, select). ECL also provides special
operators to support model aggregates (e.g., models, atoms, attributes), connections
(e.g., connpoint, target, refs), and transformations that provide access to modeling
concepts that are within the GME (e.g., addModel, setAttribute, removeNode).

ECL is distinct from OCL with respect to side-effects and model manipulation
features. OCL is a declarative language and cannot support operations to create, up-
date, or remove the entities within a model, whereas the use of ECL requires the ca-
pability to introduce side-effects into the underlying model. This is needed because
the strategies often specify transformations that must be performed on the model.
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Fig. 1. C-SAW overview

This requires the ability to make modifications to the model as the strategy is ap-
plied. ECL supports an imperative transformation procedural style with numerous
operations that can alter the state of the model. The application of ECL to model
refactoring will be presented later in Sects. 4 and 5.

3 Model Refactoring Browser

C-SAW was originally developed as an aspect weaver at the modeling level. It has
evolved into a general model transformation engine. In this chapter, C-SAW is ap-
plied specifically to a special case of model transformation, i.e., model refactoring.
In particular, ECL is used to specify and implement the model refactoring process.
The following definition of model refactoring is adapted from Roberts’ refactoring
definition [365]:

Definition 1. A model refactoring is a pair R = (pre; T) where pre is the precondition
that the model must satisfy, and T is the model transformation.

Within this definition, several trivial properties are also implied, such as the name
and parameters of the refactoring. In the following sections, detailed explanations
will be presented regarding the way C-SAW passes the parameters to strategies and
how the strategies are used to specify the precondition and transformation rules.

A model refactoring browser (see Fig. 2) has been implemented as a plugin
within GME. This plugin operates with the underlying C-SAW transformation en-
gine. The overall aim of this refactoring browser is to provide an interactive and au-
tomated framework for refactoring models. The model refactoring browser provides
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automation of generic pre-defined refactoring methods within the GME meta-model
domain. It also enables the specification of user-defined refactoring strategies, either
in the generic model or in any domain-specific model. For pre-defined refactorings,
users select a subset of the models to be refactored from the browser menu list, and
provide the appropriate parameters to the specified refactoring method. After that,
the refactoring process will be carried out automatically. A partial list of the imple-
mented UML class diagram refactorings contains: Add Class, Extract Superclass,
Extract Class, Remove Class, Move Class, Rename Class, Collapse Hierarchy, Add
Attribute, Remove Attribute, Rename Attribute, Pull Up Attribute, and Push Down
Attribute. These generic refactorings are pre-defined within the refactoring browser
and can be used for any GME meta-model. During the automated refactoring of a
model, the error messages that occur during model transformation will be displayed
as soon as a violation is discovered. For user-defined refactorings, users specify their
own refactoring strategies using ECL. Such customized refactorings will be stored
in the browser for later reuse. Sections 4 and 5 provide more details and examples
regarding the implementations of pre-defined and user-defined refactorings.

Fig. 2. Model refactoring browser in GME
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4 Generic Model Refactorings

During the meta-modeling process, the basic step is to determine the modeling para-
digm that contains all of the syntactic, semantic, and other information of the domain
to be modeled. Generic modeling, i.e., meta-modeling, is the mapping of specifica-
tion concepts onto entities, relations, and attributes of a specific domain. The GME
meta-modeling paradigm is based on UML. The syntactic definitions are modeled
using pure UML class diagrams and the static semantics are specified with OCL.
Hence, it is quite natural to regard GME meta-models as class diagrams in order to
perform UML class diagram refactorings [411]. In addition, GME meta-models ex-
tend the notations of UML to support various generic modeling concepts, which give
rise to analysis on GME meta-specific refactorings.

4.1 Class Diagram Refactorings

UML class diagrams are widely adopted to help design and visualize software struc-
ture [39]. It is apparent that some refactorings introduced for code representation can
also be applied to class diagrams. Furthermore, it may be more intuitive for the sys-
tem developer or maintainer to discover the refactoring hot spots in the class diagram
rather than the source code. Likewise, after a particular refactoring has been carried
out, the impact of it may be better overviewed in a graphical notation.

Fowler’s catalogue lists 72 object-oriented refactorings [131], among which we
select “Extract Superclass” as a specific example for describing the application of
ECL transformation strategies to refactor class diagrams. The “Extract Superclass”
refactoring is defined as, “when you have two classes with similar features, create
a superclass and move the common features to the superclass” [134] (see Fig. 3).
This refactoring helps to reduce the duplicate common features spread throughout
different classes. Generally, a refactoring is composed of a name, several parameters,
preconditions, and a sequence of strategies, all of which are specified below.

Name: Extract Superclass
Parameters: selectedClasses, className
Preconditions:

(1) The className for the new superclass must be unique, i.e., no other classes
have the same name.

(2) All of the selected classes must have at least one common attribute.
Strategies:

(1) Create a new superclass named as className.
(2) Insert the common attributes into this superclass.
(3) Delete the common attributes in each selected class.
(4) Make an inheritance relationship from the superclass to the selected classes.

Figure 4 contains the complete ECL specification of the “Extract Superclass”
refactoring. Here, the “start” aspect defines the starting point of a transformation
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Fig. 3. Extract superclass refactoring

process. It takes parameters that are provided by users (obtained from the refactor-
ing browser) and passes them to strategies that define the necessary transformation
semantics to implement the refactoring.

1 defines start,evalPrecond,extractSuper;
2

3 strategy evalPrecond(classes :modelList;
4 className:String)
5 {
6 assert(currentFolder().select(m|
7 m.name()==className)->size()==0);
8 declare commonAttrs:attributeList;
9 commonAttrs:=findCommonAttributes(classes);

10 if (commonAttrs.size()>0) then
11 extractSuper(classes,commonAttrs,className);
12 endif;
13 }
14

15 strategy extractSuper(classes:modelList;
16 commonAttrs:attributeList; className:String)
17 {
18 declare super:model;
19 super:=createModel("SuperClass", className);
20 super.addAttributes(commonAttrs);
21 classes->removeAttributes(commonAttrs);
22 super.connectedTo("Inheritance", classes);
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23 }
24

25 aspect start(selectedClasses:modelList;
26 className:String)
27 {
28 evalPrecond(selectedClasses,className);
29 }

Fig. 4. ECL for composing states into a composite state

For this particular refactoring, the precondition evaluation is specified as the first
strategy to be executed. At the beginning, it uses an “assert” statement to verify
whether a class named “className” already exists in the current model folder. If
the assertion fails, an error message will be displayed to indicate the violation of
the precondition, and the refactoring process will be terminated. However, if “class-
Name” does not yet exist, refactoring will continue to check if there are any common
attributes within the selected classes. If common attributes are found in the current
modeling scope, the second strategy “extractSuper” will begin to execute. As a re-
sult of this refactoring, a new superclass will be introduced with extracted common
attributes in the selected classes. This ECL code fragment can be applied to any num-
ber of classes within a specific scope of a model.

4.2 GME Meta-model Refactorings

This section presents several GME meta-specific refactorings. The GME meta-model
extends the concepts of UML entities and relationships to support a set of generic
modeling stereotypes, such as model, atom, connection, set, and reference [128].
Fig. 5 illustrates a simple meta-model that represents a system administration do-
main. This meta-model contains entities acting as the major roles in the domain,
such as Administrator, PC, and Server, as well as the Administrate relationship (rep-
resented by “Connection”) between these entities. In this domain, an Administrator
is responsible for a set of PCs and Servers. A Server or PC may be controlled by
several Administrators.

The meta-model is rather simple. Nevertheless, it requires every system device
managed by an administrator to have an “Administrate” connection. The drawback
is that 100 devices would require 100 separate connections. Even if a new visual-
ization was assigned to the connection lines, the vast number of associations would
render the diagram unreadable and error prone. This suggests the need for a “multi-
connections” refactoring. The following subsections describe two refactoring meth-
ods that use different entity concepts from the GME meta-model.
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Fig. 5. A system administration meta-model

Replace Connections with Set

The first refactoring utilizes the idea of “set,” which is the GME concept recom-
mended for situations in which an object has to be associated with a relatively large
number of neighboring objects in a diagram. The members of a set are “owned” by
the set through the “SetMembership” connection defined in the GME. The concept
of sets is not as indispensable as that of connections because sets can usually be re-
placed by connections. However, sets should be regarded as an alternate association
technique that supplies greater convenience in many situations. The refactored meta-
model that is based on a set is shown in Fig. 6, which is semantically equivalent to
the meta-model in Fig. 5. However, Fig. 6 provides a more concise and clearer model
structure than Fig. 5 and addresses improved scalability of devices. This refactoring
process includes removing all of the “Administrator” connections from each device
(PC and Server), replacing the “Administrator” model by a set, and connecting each
device to the new set through a “SetMembership” association.

Server
<<Model>>

Administrator
<<Set>>

PC
<<Atom>>

Fig. 6. Refactoring the meta-model using Set

Introduce FCO

Another kind of refactoring can be implemented on this meta-model by introducing a
first class object (FCO) [128], which is a generic concept representing a general class
for all of the entities and relations in GME. The purpose of using an FCO is to enable
objects that are inherently different (such as model, atom, reference, connection) to
inherit from a common base class. Figure 7 illustrates the refactored meta-model
for the system administration domain by inserting an FCO. In this case, a generic
entity that represents anything that a system administrator can govern is specified by
the FCO named “Network.” All of the devices inherit from this FCO. Consequently,
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only one connection is needed to link the “Administrator” model to the “Network”
FCO.

Server
<<Model>>

Administrator
<<Model>>

PC
<<Atom>>

Administrate
<<Connection>>

Network
<<FCO>>src dst

0..* 0..*

Fig. 7. Refactoring the meta-model using FCO

Because of the rich set of concepts in the GME meta-model, there exist other
feasible methods for GME meta-specific refactorings, such as Introduce Reference,
Compose Atoms into Model, and Replace General Inheritance with Implementa-
tion/Interface Inheritance. These refactorings have been specified using ECL and
integrated into the model refactoring browser.

5 Domain-Specific Model Refactorings

The previous section described general refactorings that were applied to UML class
diagrams at the GME meta-modeling level. Due to the intrinsic generic modeling
features of GME, the C-SAW model transformation engine can be applied to any
domain of interest, not only to the generic GME meta-model. This section pro-
vides examples within two different modeling domains to demonstrate refactoring
of domain-specific models with user-defined customizations.

5.1 Refactoring Quality of Service Models

The Adaptive Quality Modeling Language (AQML) [296] is a domain-specific
graphical modeling language developed for modeling Distributed Real-Time Em-
bedded (DRE) systems with quality-of-service (QoS) adaptation configurations. The
key objective of AQML is to raise the level of abstraction in specifying QoS policies
by providing a control-centric design for the representation and analysis of adapta-
tion of bandwidth for video streaming software.

Within the QoS Adaptation Modeling category, the designer can specify numer-
ous details, such as: the different state configurations of the QoS properties, the le-
gal transitions between the different state configurations, the conditions that enable
these transitions, the data variables that receive and update QoS information, and the
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events that trigger the transitions. These properties are modeled using an extended
finite-state machine (FSM) formalism. Figure 8 shows a QoS adaptation model of
a video streaming scenario in AQML. The application of QoS adaptation is used
to minimize the latency on the video transmission. Cutting frame size is one of the
feasible strategies to reduce the transmission rate to compensate for the increased
load.

There are six different states that are possible in Fig. 8. After initialization, the
camera is tracking over a specific area and transmitting the video. The video is ini-
tially transferred at the full frame rate with 100% full frame size (in “Nominal”
state). As load increases on the communication resources, each image frame has to
be cropped to 90% (“Crop_90pc” state) or even 80% (“Crop_80pc” state) of the
original size.

In fact, these three states perform the same task (i.e., adjusting the frame size). In
order to improve comprehensibility and modularity, we can apply the model refac-
toring technique to group related states together into a composite state by specifying
ECL model transformation strategies. Because the AQML model is based on state
machines, the generic analysis regarding state diagram refactoring is provided be-
low. This refactoring is composed of a name, a couple of parameters, preconditions,
and strategies. The selected objects are those states that users are willing to group,
as well as their internal transitions. The new state name is for the composite state.
These parameters are provided by the user of the refactoring browser. The details of
the ECL strategies are specified in Fig. 9.

Fig. 8. AQML model before refactoring

Name: Compose states into a composite state
Parameters: selectedObjects, newStateName
Preconditions:

(1) This newStateName must be legitimate, i.e., no other state has the same
name.
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(2) Find out all of the external states from which the selected states have the
incoming transitions, in the name of “ExtInStateLs.” Each found state in this
list must have the identical set of transitions (“ExtInTransitionLs”) leading
to the identical set of selected states (“IntSourceLs”).

(3) Find out all of the interior states in the selected set outward connecting to
the external states, named “IntDstLs.” Each found state in such a list must
have the identical set of transitions (“ExtOutTransitionLs”) leading to the
identical set of external states (“ExtOutStateLs”).

Strategies:
(1) Create a new state model, under the name of newStateName.
(2) Move all of the user-selected states along with all of the internal transitions

into this new composite state. According to the GME meta-model definition,
a connection is just an attachment to FCO (e.g., model, atom); whenever the
objects are copied, moved, or removed, those connections will lose one of
their ends automatically. Consequently, all of the transitions in “ExtInTran-
sitionLs” as well as “ExtOutTransitionLs” will be removed.

(3) Within this new state, insert an “Init” state and connect it to all of the states
in “IntSourceLs.”

(4) Within the composite state, insert an “End” state and make a transition from
each state in “IntDstLs” to the end.

(5) Go back to the initial outer model, and make a transition from each state in
the “ExtInStateLs” to the new composite state that will also be connected to
each state in the “ExtOutStateLs.”

1 defines start,evalPrecond,createNewState,
2 modifyNewState,modifyInitModel;
3

4 strategy evalPrecond(selectedObjs:objectList;
5 newStateName:String)
6 {
7 assert(currentFolder().select(m|
8 m.newStateName()==newStateName)->size()==0);
9 declare ExtInStateLs,IntDstLs:objectList;

10 ExtInStateLs:=findExtIns(selectedObjs);
11 IntDstLs:= findIntDsts(selectedObjs);
12 if (ExtInStateLs.hasCommonExtInTransitionLs()
13 && IntDstLs.hasCommonExtOutTransitionLs())
14 then createNewState(selectedObjs, newStateName);
15 endif;
16 }
17

18 strategy createNewState(selectedObjs:objectList;
19 newStateName:String)
20 {
21 declare IntDstLs,IntSourceLs:objectList;
22 declare newState:model;
23 IntSourceLs:=findIntSources(selectedObjs);
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24 IntDstLs:=findIntDsts(selectedObjs);
25 newState:=newModel("State", newStateName);
26 moveObjects(selectedObjects, newState);
27 newState->modifyNewState(selectedObjects,
28 IntDstLs,IntSourceLs);
29 }
30

31 strategy modifyNewState(selectedObjects,IntDstLs,
32 IntSourceLs:objectList)
33 {
34 declare init,end:atom;
35 init:=createAtom("Init");
36 IntSourceLs->connectFrom(init);
37 end:=createAtom("End");
38 IntDstLs->connectTo(end);
39 currentFolder().select(m|m.newStateName()==
40 "initialModel")->modifyInitModel(this,selectedObjs);
41 }
42

43 strategy modifyInitModel(newState:model;
44 selectedObjs:objectList)
45 {
46 declare ExtInStateLs,ExtOutStateLs:objectList;
47 declare compositeState:model;
48 ExtInStateLs:=findExtIns(selectedObjs);
49 ExtOutStateLs:=findExtOuts(selectedObjs);
50 compositeModel:=copyModel(newState);
51 ExtInStateLs->connectTo(compositeModel);
52 ExtOutStateLs->connectFrom(compositeModel);
53 }
54

55 aspect start(selectedObjects:objectList;
56 newStateName:String)
57 {
58 evalPrecond(selectedObjects, newStateName);
59 }

Fig. 9. ECL for composing states into a composite state

Figure 10 shows the refactored AQML model as a result. The upper model de-
lineates the new state diagram with a composite state “AdjustingFrameSize” and the
bottom model illustrates the three sub-states contained by this composite state.
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Fig. 10. AQML model after refactoring

5.2 Refactoring Petri nets

Petri nets (PNs) [349] are well known as a basic model for the general theory of
concurrency, and as a formal specification technique for distributed and concurrent
systems. Petri nets have obtained extensive usage and acceptance due to their easy-to-
understand visual notation and a wide range of available tools. A Petri net is primarily
characterized by places, transitions, and arcs and is graphically represented by a
directed bipartite graph in which places are drawn as circles, transitions are drawn
as bars, input and output arcs (from a place to a transition or a transition to a place)
are drawn as arrows. The execution of a Petri net is controlled by the position and
movement of markers (tokens). It incorporates the notion of a distributed state, called
the marking, which is graphically represented by black dots (tokens) in places. The
dynamic behavior of a Petri net is governed by transition firing rules. A transition
can fire if all of its input places contain at least one token, and if all of its inhibitor
places do not contain tokens. If these conditions are satisfied, the transition is said to
be enabled, and its firing removes one token from all its input places and generates
one token in each of its output places (assuming the weight of each arc is 1).

Figure 11 shows a Petri net model describing a simplified version of the classic
Dining Philosophers problem. This problem consists of philosophers sitting at a table
who do nothing but think and eat. The philosophers each have a chopstick next to
them, both of which they need in order to eat. The initial marking for this model
will have all philosophers in the “Thinking” state, and all of the chopsticks available.
Because there is only a finite set of chopsticks, it is not possible for all philosophers to
eat at the same time. The Petri net shown here models a philosopher who takes both
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chopsticks simultaneously, thus preventing the situation where some philosophers
have one chopstick, but are not able to pick up the second one.

Fig. 11. Dining Philosophers Petri net

This Dining Philosophers Petri net model is deadlock free (i.e., there always
exists at least one philosopher whose state is able to transfer from “Thinking” to
“Eating”). Nevertheless, partial starvation is still possible because the firing of one
transition named “Hungry” prevents the other neighboring transition from firing. If
one philosopher rapidly alternates between “Thinking” and “Eating,” then the neigh-
boring philosophers may never obtain the “Chopstick” that they need, which will
result in starvation. In such a case, the “Chopstick” place models a semaphore to
guarantee only one of the two adjacent philosophers can eat at the same time.

One possible solution to avoid starvation is to refactor the Petri net model in
order to enforce that every transition must be fired in alternating turns. A generalized
semaphore refactoring for this transformation can be specified as follows:

(1) Pick out the semaphores from among the places in the model.
(2) For each semaphore and its two output transitions, insert two new

places, one with a marker and the other without a marker. Connect the
two new transitions to the existing model to form a cycle (see highlights
in Fig. 12).
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To verify that the refactored Dining Philosophers Petri net is starvation free after
applying this refactoring, we might keep track of the control flow among the tran-
sitions one by one. Figure 12 illustrates this Petri net model after refactoring. Due
to the six added places, initially only the philosopher on the left can be triggered
from the “Thinking” state to “Eating” state. This transition will move the markers
in P1 and P2 to Q1 and Q2. After the first philosopher finishes eating and places
the chopsticks back on the table (marker goes from “Eating” to “Chopsticks”), the
philosopher in the middle will be enabled to eat.

Fig. 12. Dining Philosophers Petri net

Likewise, the philosopher on the right will eventually start to eat in turn. There-
fore, all of the philosophers will obtain the opportunity to eat in turn. The correspond-
ing ECL code fragment for implementing this particular refactoring is illustrated in
Fig. 13. An iteration over the selected list of the Petri net places checks to see if they
meet the precondition of being semaphores, and then inserts two new places with
appropriate connections. This strategy is suitable for any number of semaphores in-
volved in the refactoring. For simplicity, it is assumed that each semaphore controls
two transitions and it is the user’s responsibility to select the semaphores to be trans-
formed.
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1 defines freeStarvation, refactorPetriNet;
2

3 strategy freeStarvation()
4 {
5 declare dstList:modelList;
6 declare dst1,dst2,p,q:model;
7 declare static num:Integer;
8 dstList:=findOutConnections();
9 assert(dstList.size()==2);

10 dst1:=dstList.get(0); dst2:= dstList.get(1);
11 p:=createModel("InitMarker","P"+intToStr(num));
12 q:=createModel("Place", "Q" + intToStr(num));
13 num:=num + 1;
14 addConnection(dst1,p); addConnection(p,dst2);
15 addConnection(dst2,q); addConnection(q,dst1);
16 }
17

18 aspect refactorPetriNet(selectedObjs:objectList)
19 {
20 selectedObjs->freeStarvation();
21 }

Fig. 13. ECL for starvation free Petri net

6 Related Work

There are several ongoing investigations into the topic of software refactoring. This
section briefly acknowledges some of the work that has been done in this area. Mens
and Tourwé [291] made a comprehensive literature survey on the existing research
of general software refactoring, which is based upon various research perspectives
such as refactoring activities, specific techniques to support these activities, types of
the software artifacts to be refactored, and refactoring effects.

Opdyke [335] first initiated the concept of refactoring. He identified a set of
program refactorings that were applied to an object-oriented framework and pre-
sented the theory for automating refactorings in a behavior/semantics preserving
way. Fowler et al. [131] provided a catalog of dozens of refactoring techniques for
improving code. The focus on these works is at the code level, which is different
from our approach to perform the refactoring at a higher level of modeling.

With respect to the research of model refactoring at a higher level of abstrac-
tion, Sunyĺę et al. [411] proposed an initial set of refactorings for UML class dia-
grams and statecharts. Their research provided a fundamental paradigm for model
refactoring to improve the design of object-oriented applications; nevertheless, they
do not have any concrete implementation of representative tools. Boger [41] imple-
mented a refactoring browser for a UML case tool to automate the process of system-
defined refactoring methods. However, this browser can only provide the automation
of pre-existing refactorings; it does not allow a user to specify their own customized
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refactoring strategies. Porres [351] defines model refactorings as rule-based model
transformations, which is similar to our approach. But, his experimental tool does
not represent the capability to support refactoring automation and domain-specific
model refactorings.

In contrast to the related literature, our model refactoring browser is built on
top of an underlying model transformation engine that can enable the automation
and customization of refactorings for either generic meta-models or domain-specific
models.

Additionally, there exist other related model refactoring approaches, but with
different contexts from our approach. Astels [20] presented techniques for detect-
ing bad smells in UML. Correa and Werner [75] primarily contribute several smells
and refactorings to OCL specifications. Several researchers are concentrating on a
refactoring based on design pattern models [134, 20]. Van Gorp et al. [155] extend
the UML meta-model for automating the consistency between the model and the
code. Tichelaar et al. [425] developed a specific meta-model to support language-
independent refactorings for Smalltalk and Java.

Several of the approaches cited above provide theoretical investigations that do
not have concrete implementations of representative tools. Some of the implemen-
tation tools provide the automation of pre-existing refactorings, but do not offer the
extensibility of user-defined refactorings. Some tools cannot support refactoring au-
tomation.

7 Conclusions and Future Work

This chapter described an approach to model refactoring that is based on the existing
C-SAW model transformation engine. With ECL, users can express their objectives
in a more concise manner than using traditional programming languages. It also per-
mits a modeler to make changes flexible to the base model without manually visiting
multiple locations in the model (for instance, imagine such a case when there are 100
semaphores within one Petri net model). The C-SAW model transformation engine
and its associated language ECL permit the modeler to make quantifiable statements
across the model in a style that supports improved reusability and scalability of mod-
els.

An initial prototype model refactoring browser tool serves as a front-end to C-
SAW and exists as a plugin within the GME. A set of pre-defined refactorings have
been integrated within the browser in order to facilitate automated refactorings. The
ECL can be used also to specify new refactoring strategies. This interactive tool per-
mits users to request refactorings to either a GME meta-model, or a domain-specific
model (e.g., Petri Nets, or finite-state machines). The current research project is inte-
grated with the GME, whose meta-meta-model is based on its own specification in-
stead of the Meta-Object Facility (MOF). The existence of GME’s UML/OCL meta-
meta-model predates the adoption of MOF as the OMG’s standard meta-meta-model.
In addition, although MOF offers some advantages over the GME UML/OCL meta-
meta-model, such as package importation and merge, it is also lacking some features
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that are important for defining domain-specific modeling languages, such as stateful
associations, facilities for multi-view modeling, and a standard way to specify the
concrete syntax of models [111]. However, there is an ongoing project that incorpo-
rates MOF into the GME. It is believed that the same model refactoring technique
can be applied to GME-MOF. Furthermore, this research is not limited to GME.
We believe that it can be adapted into other modeling tools and plan to generalize a
tool-independent version of the model refactoring browser.

With respect to future work, there are several extensions that will be integrated
into the model refactoring browser. Behavior/semantics preservation is an important
issue with regard to model refactoring. To preserve the semantics of a model, it is
necessary to measure the impact of a model transformation in such a way that it can
be proved that the behavior/semantics of the model is unchanged. In the GME, a
meta-model is specified with UML and OCL constraints. The meta-model can assist
in the determination of behavior/semantics preservation [411]. However, a more pre-
cise formalism is required for semantic and behavior analysis to ensure the preserva-
tion of the model behavior. Because the behavior/semantics of different models may
have different specification, and various aspects of the behavior/semantics may de-
pend on various user-specific concerns [291], it is essential to allow the modelers to
provide the information of the behavior property that will remain invariant during a
model refactoring. We are in the process of developing a model testing suite to assess
behavior/semantics preservation by executing user-specified test cases on target and
refactored models (p. 219 of this book). In addition, a debugging toolkit is planned
for C-SAW. This will be indispensable for detecting errors in the ECL specification
during the refactoring execution process.
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Summary. As models and model transformations are elevated to first-class artifacts within
the software development process, there is an increasing need to provide support for tech-
niques and methodologies that are currently missing in modeling practice, but provided readily
in other stages of the development lifecycle. Within a model transformation infrastructure, it is
vital to provide foundational support for validation and verification of model transformations
by investigating and constructing a testing framework focused at the modeling level, rather
than source code at the implementation level. We present a framework for testing model trans-
formations that is based on the concepts of model difference and mapping. This framework is
integrated with an existing model transformation engine to provide facilities for construction
of test cases, execution of test cases, comparison of the output model with the expected model,
and visualization of test results. A case study in model transformation testing is presented to
illustrate the feasibility of the framework.

1 Introduction

To improve the quality of software, it is essential to be able to apply sound soft-
ware engineering principles across the entire lifecycle during the creation of various
software artifacts. Furthermore, as new approaches to software development are ad-
vanced (e.g., model-driven software development – MDSD), the investigation and
transition of an engineering process into the new approaches is crucial. Model trans-
formations are the heart of model-driven research that assists in the rapid adaptation
and evolution of models at various levels of detail (p. 19). As models and model
transformations are elevated to first-class artifacts within the software development
process, they need to be analyzed, designed, implemented, tested, maintained, and
subject to configuration management. For models representing embedded systems
that perform critical functions, the importance of correct model transformations is
elevated further (p. 289 of this book) [414]. A holistic approach to model trans-
formation can help to assure that the transformation process is reusable and robust
[39]. At the implementation level, testing is a popular research area that has obtained
widespread attention [473]. Various tools and methodologies have been developed to
assist in testing the implementation of a system (e.g., unit testing, mutation testing,
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and white/black-box testing). In addition to source code, testing has been applied
to other software artifacts (e.g., component systems [197] and executable models
[95]). However, in current model transformation environments, there are few facil-
ities provided for testing transformation specifications in an executable style. The
result is a lack of an effective and practical mechanism for finding errors in transfor-
mation specifications. The goal of our research is to describe a disciplined approach
to transformation testing, along with the development of the required tools, to assist
in ensuring the correctness of model transformations.

In general, model transformation techniques can be categorized as either model-
to-model transformation or model-to-code translation [80]. Model-to-model trans-
formation translates between source and target models, which can be instances of the
same or different meta-models. In a typical model-to-model transformation frame-
work, transformation rules and application strategies are written in a special lan-
guage, called the transformation specification, which can be either graphical [8] or
textual [159]. The source model and the transformation specification are interpreted
by the transformation engine to generate the target model. In a model transforma-
tion environment, assuming the model transformation engine works correctly and the
source models are properly specified, the model transformation specifications are the
only artifacts that need to be validated and verified. A transformation specification,
like the code in an implementation, is written by humans and susceptible to errors.
Additionally, a transformation specification may be reusable across similar domains.
Therefore, it is essential to ensure the correctness of the transformation specification
before it is applied to a collection of source models.

Model transformation testing as defined in this chapter focuses on transfor-
mation specification testing within the context of model-to-model transformation
where source models and target models belong to the same meta-model. Specifica-
tion testing involves executing a specification with the intent of finding errors. Such
execution-based testing has several advantages that make it an effective method to
determine whether a task (e.g., model transformation) has been correctly carried out.
These advantages are: 1) the relative ease with which many of the testing activi-
ties can be performed; 2) the software artifacts being developed (e.g., model trans-
formation specifications) can be executed in their expected environment; 3) much
of the testing process can be automated [197]. Specification testing can only show
the presence of errors in a specification and not their absence. However, as a more
lightweight approach to specification verification and validation compared to model
checking [198, 425, 211] and other formal methods (e.g., theorem proving), test-
ing can be very effective in revealing such errors. This chapter describes our initial
work on a testing framework that supports construction of test cases based on test
specifications, execution of test cases, and examination of the produced results.

We define execution of a test case to involve the application of a deterministic
transformation specification with test data (i.e., input to the test case) and a compar-
ison of the actual results (i.e., the target model) with the expected output (i.e., the
expected model), which must satisfy the intent of the transformation. If there are no
differences between the actual target and expected models, it can be inferred that the
model transformation is correct with respect to the given test specification. If there
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exist differences between the target and expected models, the transformation specifi-
cation needs to be reviewed and modified. Within this context, model transformation
testing has three core challenges:

(1) Automatic comparison of models: During model transformation testing, com-
parison between two models (i.e., the expected model and the target model) must
be performed to determine if there is a mismatch between the models. Manual
comparison of models can be tedious, exceedingly time consuming, and sus-
ceptible to error. An effective approach is to compare the actual model and the
expected model automatically with a high-performance algorithm. Pre-existing
graph matching algorithms are often too expensive for such a task [249]. A
model transformation testing engine requires an efficient and applicable model
comparison algorithm.

(2) Visualization of model differences: To assist in comprehending the comparison
results, comprehensive visualization techniques are needed to highlight model
differences intuitively within modeling environments. For example, graphical
shapes, symbols, and colors can be used to indicate whether a model element is
missing or redundant. Additionally, we needed to decorate these shapes, sym-
bols and colors onto models even inside models. Finally, a navigation system is
needed to support browsing model differences efficiently. Such techniques are
essential to understanding the results of a model transformation testing frame-
work.

(3) Debugging of transformation specifications: After determining that an error
exists in a model transformation, the transformation specification must be inves-
tigated in order to ascertain the cause of the error. A debugging tool for model
transformations can offer support for isolating the cause of a transformation er-
ror. Of course, debuggers at the programming language level cannot be reused
at the modeling level due to the semantic differences in abstraction between the
artifacts of code and models. A model transformation debugger must understand
the model representation, as well as possess the ability to step through individual
lines of the transformation specification and display the model data intuitively
within the host modeling environment.

This chapter focuses on challenges 1 and 2 from above (i.e., the model difference
and visualization problems) and introduces a framework for model transformation
testing that is based on model comparison techniques. Theoretically, our approach
renders models and meta-models as graphical notations such that the model com-
parison problem corresponds to graph comparison. The method and tools collabo-
rate with an existing model-to-model transformation engine to provide facilities for
construction of test cases, execution of test cases, comparison of the output model
with the expected model, and visualization of test results. Currently, we assume test
specification and test cases are generated manually by model transformation devel-
opers or testers; and the expected models used to compare with the actual results are
also specified manually. We also recognize that the expected models in most model-
ing practices can be built from the base models instead of from scratch so that less
manual effort is involved. The automation provided by our testing framework is the
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execution of the tests for ensuring the correctness of the transformation specifica-
tion. The chapter is structured as follows: Sect. 2 reviews the background necessary
to understand the remainder of the chapter. The importance of model mapping and
difference is described in Sect. 3, along with an algorithm for model comparison.
The core of the chapter can be found in Sect. 4, which presents the framework for
model transformation testing. Section 5 illustrates the feasibility of the framework
via a case study of model transformation. Section 6 is a discussion of related work.
Finally, Sect. 7 provides concluding remarks and discusses future work.

2 Background

This section briefly introduces the concepts of model-driven software development
and the role of model transformation. Specifically, the modeling tool and transfor-
mation engine used in this research is described.

The Model-Driven Architecture (MDA) [135] is an initiative by the Object Man-
agement Group (OMG) to define Platform Independent Models (PIMs), which can
be transformed to intermediate Platform Specific Models (PSMs), leading to synthe-
sis of source code and other artifacts [39]. The current OMG standards for defining
PIMs and PSMs include the Meta-Object Facility (MOF) and the UML. To provide
a well-established foundation for transforming PIMs into PSMs, the OMG initiated
a standardization process by issuing a Request for Proposal (RFP) on Query/Views/-
Transformations (QVT) [165]. Driven by practical needs and the OMG’s request, a
large number of approaches to model transformation have been proposed recently
[80]. The primary approaches for model-to-model transformation include graph-
based transformation [8], XSLT-based transformation [101], and specialized OCL-
based transformation (e.g., the Embedded Constraint Language [160]). Based on
these approaches, associated tools have been developed to facilitate rapid adaptation
and evolution of models.

Over the past four years, we have developed a model transformation engine,
the Constraint-Specification Aspect Weaver (C-SAW), which unites the ideas of
aspect-oriented software development (AOSD) [251] with model-integrated com-
puting (MIC) [244] to provide better modularization of model properties that are
crosscutting throughout multiple layers of a model [160]. MIC has been refined
over the past decade at Vanderbilt University to assist in the creation and synthe-
sis of complex computer-based systems [244]. The Generic Modeling Environment
(GME) [269] is a domain-specific modeling tool that realizes the principles of MIC.
The GME provides meta-modeling capabilities that can be configured and adapted
from meta-level specifications (representing the modeling paradigm) that describe
the domain. The GME is generic enough to construct models of different domains
and has been proven in practice on several dozen international research projects that
were sponsored by industry and federal governments.

C-SAW is a model transformation engine that is integrated into the GME as a
plug-in. C-SAW provides the ability to explore numerous modeling scenarios by
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considering cross-cutting modeling concerns as aspects that can be inserted and re-
moved rapidly from a model. Within the C-SAW infrastructure, the language used to
specify model transformation rules and strategies is the Embedded Constraint Lan-
guage (ECL), which is an extension of OCL [160]. ECL provides many of the com-
mon features of OCL, such as arithmetic operators, logical operators, and numer-
ous operators on collections (e.g., size, forAll, exists, select). It also provides spe-
cial operators to support model aggregates (e.g., models, atoms, attributes), connec-
tions (e.g., source, destination), and transformations (e.g., addModel, setAttribute,
removeModel) that render access to modeling concepts within the GME.

There are two kinds of ECL specifications: a specification aspect describes the
binding and parameterization of strategies to specific entities in a model, and a strat-
egy, which specifies elements of computation and the application of specific proper-
ties to the model entities. C-SAW interprets these specifications and transforms the
input source model into the output target model. An example ECL specification of a
model transformation is provided in Sect. 5.

The C-SAW website is a repository for downloading papers, software, and sev-
eral video demonstrations that illustrate model transformation with C-SAW in the
GME (see: http://www.cis.uab.edu/gray/Research/C-SAW/). In this chapter, we do
not emphasize the aspect-oriented features of C-SAW; information on that topic can
be found in [159, 160]. For the purpose of this chapter, we consider C-SAW as a gen-
eral model transformation tool with ECL serving as the transformation specification
language.

Although we use C-SAW in the example of Sect. 5, we believe the general
process of testing model transformations can be adopted for any combination of
modeling tool and transformation engine, provided that there is a mechanism for in-
tegration (i.e., a plug-in architecture, such as that provided in GME). Figure 1 shows
the integration of GME, C-SAW and the testing engine (the core testing tool de-
scribed in this chapter). This framework is based on the concepts of model mapping
and difference, as well as the techniques of model comparison presented in the next
section.

3 Detecting the Differences Between Models

A distinction between actual and expected results is critical in software testing.
Model comparison is vital to model transformation testing in order to discover the
mapping and differences between the output model and the expected model. From a
mathematical viewpoint, GME models can be rendered in a graphical representation,
permitting graph-theoretic operations and analysis to be performed. This section ex-
plores model difference based on graphical notations and presents an algorithm for
model comparison.

3.1 Graph Representation of Models

In GME, meta-models are described in UML class diagrams and OCL constraints,
which define the schema and constraint rules for models. GME models can be repre-
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Fig. 1. Integration of GME, C-SAW, and testing engine

sented as typed and attributed multi-graphs that consist of a set of vertices and edges
[8]. The following definitions are given to describe a GME model.

Vertex. A vertex is a 3-tuple (name, type, attributes), where name is the identifier
of the vertex, type is the corresponding meta-modeling element for the vertex, and
attributes is a set of attributes that are predefined by the meta-model.

Edge. An edge is a 4-tuple (name, type, src, dst), where name is the identifier of
the edge, type is the corresponding meta-modeling element for the edge, src is the
source vertex, and dst is the destination vertex.

Graph. A graph consists of a set of vertices and a set of edges where the source
vertex and the destination vertex of each edge belong to the set of vertices. Thus, a
graph G is an ordered pair (V, E), ∀e ∈ E,Src(e) ∈ V ∧ Dst(e) ∈ V .

Elements and features. In GME, a model can be represented as a graph. We
define a model element as a vertex or an edge in a graph. A feature is any attribute
of a model element.

In practice, more graphical representations are needed to describe complicated
model systems (e.g., GME also supports model hierarchy and multi-views [269]).
However, as a first step toward model comparison, the following discussions on
model mapping and difference are based on these definitions.

3.2 Model Mapping and Difference

The comparison between two models, M1 and M2, always produces two sets: the
mapping set (denoted as MS) and the difference set (denoted as DS). The mapping
set contains all pairs of model elements that are mapped to each other between two
models. A pair of mappings is denoted as Map (elem1, elem2), where elem1 is in
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M1 and elem2 is in M2, which may be a pair of vertices or a pair of edges. A
vertex v1 in M1 mapping to a vertex v2 in M2 implies matching names and types,
disregarding whether their features are matching or not. An edge e1 in M1 mapping
to an edge e2 in M2 implies matching names and types (i.e., source vertices are
a mapped pair, and destination vertices are also a mapped pair). When finding the
mappings between two models, the name match and type match are considered as
a structural mapping to simplify the process of model comparison. This mapping is
based on the syntax of a modeling language. In complicated situations, two models
can be syntactically different but semantically equivalent, which is also acceptable
in the testing context. However, these situations are not considered in this chapter.

The difference set is more complicated than the mapping set. The notations used
to represent the differences between two models are operational terms that are con-
sidered more intuitive [13]. There are several situations that could cause two models
to differ. We define DS = M2 - M1, where M2 is the actual output model, and M1 is
the expected model in model transformation testing. The first differing situation oc-
curs when some modeling elements (e.g., vertices or edges in graph representation)
are in M1, but not in M2. We denote this kind of difference as New (e1) where e1 is
in M1, but not in M2. The converse is another situation that could cause a difference
(i.e., elements in M2 are missing in M1). We denote this kind of difference as Delete
(e2) where e2 is in M2, but not in M1. These two situations occur from structural
differences between the two models. A third difference can occur when all of the
structural elements are the same, but a particular value of an attribute is different. We
denote this difference as Change (e1, e2, f, val1, val2) where e1 is in M1 and e2 is
in M2, which are a pair of mapping vertices, f is the feature name (e.g., name or an
attribute), val1 is the value of e1.f , and val2 is the value of e2.f . Thus, the difference
set actually includes three sets: DS = N, D, C where N is a set that contains all the
New differences, D is a set that contains all the Delete differences, and C is a set that
contains all the Change differences.

3.3 Model Comparison

In GME, models can be exported and imported to an XML representation. A possible
approach to the model comparison problem is to compare the XML representations
of two models. However, with this approach, applications need to be developed to
handle the results retrieved from the XML comparison in order to indicate the map-
ping and difference on models within the modeling environment. A more exact ap-
proach is to regard model comparison as graph comparison so that model elements
(e.g., vertices and edges) can be compared directly via model navigation APIs pro-
vided by the underlying modeling environment.

The graph matching problem can be defined as finding the correspondences be-
tween two given graphs. However, the computational complexity of general graph
matching algorithms is the major hindrance to applying them to practical applica-
tions. For example, the complexity of graph isomorphism is a major open problem
and many other problems on graphs are known to be NP-hard [249]. Thus, it is nec-
essary to loosen the constraints on graph matching to find solutions in a faster way. In
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model transformation testing, one of the goals is to automate model comparison with
less labor-intensive integration. It is well known that some parts of model comparison
algorithms are greatly simplified by requiring that each element have a universally
unique identifier (UUID) which is assigned to a newly created element and will not
be changed unless it is removed [13]. To simplify our model comparison algorithm, it
is necessary to enforce that every model element has a unique identifier, such that the
model comparison algorithm is based on name/id matching. That is, the correspond-
ing elements are determined when they have the same name/id, which will simplify
the comparison algorithm. For example, to decide whether there is a vertex (denoted
as v2) in M2 mapped to a vertex (denoted as v1) in M1, the algorithm first needs to
find a vertex with the same name/id as v1’s and then judge whether their type and
attributes are equivalent.

Figure 2 presents an algorithm to calculate the mapping and the difference be-
tween two models. It takes two models (M1: the expected model and M2: the target
model) as input, and produces two sets: the mapping set (MS) and the different set
(DS) that consists of three types of differences (N: the set of the New differences,
D: the set of the Delete differences, and C: the set of the Change differences). When
this algorithm is applied to model comparison within the testing framework, its out-
put can be sent to the visualization component to display test results and to generate
test reports.

Input: M1, M2

Output: MS, DS {N, D, C}

Begin

1. For each vertex v1 in M1

If there is a vertex v2 in M2 mapped to v1

Mark v1 and v2 mapped

Add pair (v1, v2) to MS

For each attribute f of v1 and v2,

If the value of v1 (val1) is not equal to

the value of v2 (val2)

Add (v1, v2, f, val1, val2) to C

Else

Add v1 to N

2. For each edge e1 in M1

If there is an edge e2 in M2 mapped to e1

Mark e1 and e2 mapped

Add pair (e1, e2) to MS

Else

Add e1 to N

3. For those elements in M2 without mapped mark

Add them to D

End
Fig. 2. A ModelComparison algorithm
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4 A Framework for Model Transformation Testing

In the context of C-SAW, a model transformation is performed by interpreting the
ECL transformation specification. This section describes a framework (see Fig. 3) for
testing model transformation specifications that assists in generating tests, running
tests, and documenting tests automatically and efficiently.

Test Cases Constructor

Test Analyzer

Test cases

Test results

MetaModels
Domain 

Models

Testing Engine

Executor Comparator

Test SpecificationTransformation 

Specification

Fig. 3. A framework for model transformation testing

There are three primary components to the testing framework: test case construc-
tor, test engine, and test analyzer. The test case constructor consumes the test specifi-
cation and then produces test cases for the to-be-tested transformation specification.
The generated test cases are passed to the test engine that interacts with C-SAW and
the GME to exercise the specified test cases. Within the testing engine, there is an
executor and a comparator. The executor is responsible for executing the transfor-
mation on the source model and the comparator compares the target model to the
expected model and collects the results of comparison. The test analyzer visualizes
the results provided by the comparator and provides a capability to navigate among
any differences.

4.1 Test Case Constructor

In testing a model transformation, there are different ways to construct test cases.
For example, tests can be constructed according to different coverage criteria or test
specifications [373]. In our testing framework, we assume tests are planned by the
user and defined in a textual test specification. A test specification defines a single
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test case or a suite of test cases in order to satisfy the testing goal. A simple test
case specification defines: a transformation specification to be tested (i.e., an ECL
specification file describing a single strategy or a collection of strategies); a source
model and an expected model (i.e., a specification of the expected result); as well
as the criteria for determining if a test case passed successfully (such as the equiva-
lence between the target and expected models). The test specification can be written
by a user or generated from a wizard by selecting all of the necessary information
directly from the browser within the GME. A test specification example is shown in
the case study of Sect. 5.1. The test case constructor interprets the specification to
retrieve the necessary information involved in a test case, such as: the to-be-tested
ECL specification file, the input model, the expected model, and the output model.
The test case constructor composes the specification with the input model to generate
an executable test case. The work of the test case constructor can be done manually,
but is more effective when performed automatically.

4.2 Test Engine

The test engine will load and exercise each test case dynamically. Figure 4 shows an
overview for executing a model transformation test case. During test case execution,
the source model and the transformation specification serve as input to the executor,
which performs the transformation and generates a target model. After execution,
the comparator takes the target model from the executor and compares it to the given
expected model. The result of the comparison should be collected and passed to the
test analyzer to be visualized. If the target model matches the expected model, the test
is successful. If the two models do not match, the difference is highlighted to help
find the errors. During the executor and comparator steps, the meta-model is used
to provide the required structure and constraints for test case execution and model
comparison (i.e., type information from the meta-model will be used to perform the
model comparison).

As mentioned in Sect. 3, there are several situations that could cause the output
model and the expected model to differ. If there are differences between the target
model and the expected model, this suggests that there is an error in the transforma-
tion specification. These differences are passed to an analyzer that can visualize the
difference clearly in a representation that is easily comprehended by a human.

4.3 Test Analyzer

When rendered in a graphical notation, models typically have complicated internal
data structures; thus, it is difficult to comprehend the differences by visual observa-
tion. It is also hard for humans to locate and navigate the differences between two
models without automated assistance. To solve the visualization problem, a test an-
alyzer is introduced to indicate the differences directly on the model diagrams and
attribute panels within the modeling environment.

The test analyzer provides an intuitive interface for examining the differences be-
tween two models. It contains model panels, attribute panels, a difference navigator,
and a difference descriptor, as described in the following list.
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Transformation
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Test Result

Executor Comparator

Test Engine

OutputModel
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Fig. 4. Overview of a test case execution

(1) Output model panel and attribute panel: Displays the target output model and
its attributes. Various shapes and colors are used for marking numerous types of
difference: a red circle is used to mark the “New” difference, a green square is
used to mark the “Delete” difference, and a “Change” difference is highlighted
in blue. Generally, structural differences are shown on the diagram and feature
differences are shown on the attribute panel. An example is given in Sect. 5.3.

(2) Expected model panel and attribute panel: Displays the expected model dia-
gram and attributes. It illustrates the expected results for the tested model trans-
formation.

(3) Difference navigator: Hierarchically displays the differences between two mod-
els.

(4) Difference descriptor: Textually shows the detailed description of the currently
selected difference.

5 Case Study: Example Application of Model Transformation
Testing

To illustrate the feasibility and utility of the transformation testing framework, this
section describes a case study of testing a model transformation. This case study
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is performed on an experimental platform, the Embedded System Modeling Lan-
guage (ESML), which is a domain-specific graphical modeling language developed
for modeling real-time mission-computing embedded avionics applications [159].
There are over 50 ESML component models that communicate with each other via a
real-time event-channel mechanism.

The model transformation task of the case study is: 1) find all the data atoms in
a component model, 2) create a log atom for each data atom, and 3) create a con-
nection from the log atom to its corresponding data atom. The type (i.e., the “kind”
attribute) of the generated log atom is set to “On Method Entry.” Suppose that Fig. 5
represents the initial ECL model transformation specification to accomplish the pre-
scribed transformation of the case study. This specification defines two strategies.
The “FindData” strategy specifies the search criteria to find out all the “Data” atoms.
The “AddLog” strategy is executed on those data atoms identified by FindData. The
AddLog strategy specifies the behavior to create the log atom for each data atom.
Before this specification is applied to all component models and reused later, it is
necessary to test its correctness.

strategy FindData()

{

atoms() → select(a | a.kindOf() == “Data”) → AddLog();

}

strategy AddLog()

{

declare parentModel : model;

declare dataAtom, logAtom : atom;

dataAtom := self;

parentModel := parent();

logAtom := parentModel.addAtom(“Log”,“LogOnMethodEntry”);

parentModel.addAtom(“Log”, “LogOnRead”);

logAtom.setAttribute(“Kind”, “On Write”);

logAtom.setAttribute(“MethodList”, “update”);

}

Fig. 5. An untested transformation specification
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5.1 Test Specification Definition

A test specification is used to define the test plan. In this example, there is only one
test being performed, with the test specification defined in Fig. 6.

Test test1

{

Specification file: “C: \ ESML \ ModelComparison1

\ Strategies \ addLog.spc”

Start Strategy: FindData

GME Project: “C: \ ESML \ ModelComparison1

\ modelComparison1.mga”

Input model: “ComponentTypes

\ DataGatheringComponentImpl”

Output model: “ComponentTypes \ Output1”

Expected model: “ComponentTypes \ Expected1”

Pass: Output1 == Expected1

}

Fig. 6. An Example Test Specification

A test is composed of a name (e.g., “test1”) and body. The test body defines the
locations and identifiers of the specification file, the start strategy, a GME Project
built for testing, the input source and output target models, the expected model, as
well as the criteria for asserting a successful pass.

A sample input model and expected model are shown in Fig. 7. The input model
contains a data atom named “numOfUsers.” According to the transformation task, a
log atom should be created for this data atom and a connection should be generated
from the log atom to the data atom.

Input Model Expected Model

Fig. 7. The input model and the expected model
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5.2 Test Case Construction

According to the test specification, the test engine generates a new ECL specification
that can be executed by the executor (see Fig. 8). The italicized text is the ECL code
to be tested and the other ECL code (i.e., the “test1” aspect) is added by the test case
generator in order to construct an executable specification that composes strategies
with an aspect. In this case, strategies are the to-be-tested ECL code and the aspect
specifies the input model as the source model to be transformed.

strategy FindData()

{

atoms() → select(a | a.kindOf() == “Data”) → AddLog();

}

strategy AddLog()

{

declare parentModel : model;

declare dataAtom, logAtom : atom;

dataAtom := self;

parentModel := parent();

logAtom := parentModel.addAtom(“Log”,

“LogOnMethodEntry”);

parentModel.addAtom(“Log”, “LogOnRead”);

logAtom.setAttribute(“Kind”, “On Write”);

logAtom.setAttribute(“MethodList”, “update”);

}

aspect test1()

{

rootFolder( ).findFolder(“ComponentTypes”).models().

select(m | m.name().endWith(“DataGatheringComponentImpl”))

→ FindData();

}

Fig. 8. The executable test specification in ECL
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5.3 Test Results and Difference Indication

After the test case is executed, the output target model and the expected model are
sent to the comparator, which performs a comparison using the model comparison
algorithm and passes the result to the test analyzer. Figure 9 shows the output model
with the difference indication when compared to the expected model. There are three
differences indicated on the model diagram:

• Difference 1: missing connection from LogOnMethodEntry to numberOfUsers,
which is a “New” difference and marked by a red circle.

• Difference 2: an extra atom “LogOnRead” is inserted, which is a “Delete” differ-
ence and marked by a green square.

• Difference 3: the kind attribute of the LogOnMethodEntry has a different value
(“On Write”) from the expected value (“On Method Entry”), which is a “Change”
difference and highlighted in blue.

Extra Atom
Missing

Connection

Different

Value

Fig. 9. The output model with difference indication

5.4 Correction of the Model Transformation Specification

According to the test results, it is obvious that there are three corrections that need
to be made to the transformation specification. One correction to be added will cre-
ate the connection between LogOnMethodEntry and numberOfUsers. The second
correction is to delete one of the lines in the specification (i.e., the line that adds a
LogOnRead: “parentModel.addAtom(“Log”, “LogOnRead”)”). The third correction
is to change the value of the Kind attribute from “On Write” to “On Method Entry.”
The modified transformation specification is shown in Figure 10 with the corrections
underlined. We do not imply that Figure 10 is automated - the transformation in this
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figure represents the correct specification that would be required after observing the
test results.

strategy FindData()

{

atoms() → select(a | a.kindOf() == “Data”) → AddLog();

}

strategy AddLog()

{

declare parentModel : model;

declare dataAtom, logAtom : atom;

dataAtom := self;

parentModel := parent();

logAtom := parentModel.addAtom(“Log”,

“LogOnMethodEntry”);

parentModel.addAtom(“Log”, “LogOnRead”);

logAtom.setAttribute(“Kind”, “On MethodEntry”);

logAtom.setAttribute(“MethodList”, “update”);

parentModel.addConnection(“AddLog”, logAtom, dataAtom);

}

Fig. 10. The corrected transformation specification

6 Related Work

There are a variety of techniques for validation and verification of model and model
transformation (e.g., model checking [211, 377], simulation [464] and formal proof
[436]). Model checking is a widely used technique for validation and verification of
model properties (e.g., the Cadena model checking toolsuite [198], the SPIN model
checker [211], and the CheckVML tool [377]). However, transformation specifi-
cation testing is different from model checking in its focus on the correctness of
transformations that also requires engineering processes [435]. A mathematically
proven-based technique for validating model transformations is proposed in [436];
however, such an approach requires a mathematical description and analysis of mod-
els and transformation rules. Compared with these approaches, our contribution to
transformation testing is a lightweight approach to finding transformation faults by
executing them within the model transformation environment without the need to
translate models and transformation specifications to mathematical representations.
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Based on an RFP issued by the OMG for a standard test instrumentation interface
(TII) for executable models (see “Model-Level Testing and Debugging Interface”
[164]), Eakman presents an approach to test executable PIMs where instrumenta-
tion code is added during transformation from a PIM to a PSM [95]. This approach
requires execution at the source code levels, but our contribution does not involve
source code executions.

Toward realizing our vision of execution-based testing of model transforma-
tions, we need to solve the problems of model difference detection and visualiza-
tion. There has been some work on model difference detection and visualization in
current modeling research [13, 329]. Algorithms for detecting differences between
versions for UML diagrams can be found in [329] where UML models are assumed
to be stored as syntax trees in XML files or in a repository system. Several meta-
model-independent algorithms regarding difference calculation between models are
presented in [13], which are developed primarily based on some existing algorithms
on detecting changes in structured data [59] or XML documents [455]. In the above
approaches, a set of operations such as “create” and “delete” is used to represent and
calculate model differences. However, these research results have not been used to
construct testing tools within model transformation environments. In addition, the
commonly proposed technique to visualize the model differences is coloring [329].
However, coloring alone is not sufficient in visualizing model differences in compli-
cated modeling systems that support model hierarchy and composition. Our research
involves utilizing shapes, symbols, and textual descriptions to advance visualization
of model differences and constructing a navigation system for browsing model dif-
ferences.

7 Conclusions and Future Work

This chapter presents a testing framework for model transformation that provides
the facilities for test case construction, execution of test cases, comparison of the
output model with the expected model, and visualization of test results. This frame-
work is based on the concepts of model mapping and model difference to provide a
technique for model comparison. The main purpose of the framework is to automate
testing of model transformation to ensure the correctness of the changes made to a
source model; the focus is neither on generation of model-driven test cases for the
implementation (programming language) development phase nor on test-driven de-
velopment of models [203]. This initial framework is integrated within the C-SAW
model transformation engine and the GME. Although we target GME models in this
chapter, we believe the general idea of transformation testing is also applicable to
other modeling tools that can support integration with a plug-in architecture. To uti-
lize the framework in other modeling tools, the test engine would need to adjust to
the tool-specific model semantics in order to support model mapping and difference
within the host modeling tool.

There are several opportunities to expand the work presented in this chapter.
Models are often represented visually as a hierarchical graph with complex inter-
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nal representations. Several modeling tools (e.g., the GME) capture the hierarchy
and containment within models explicitly, whereby the modeler recursively clicks
on higher-level models in order to reveal the contents of the containment. The hi-
erarchical nature of models makes it difficult to calculate and observe visually the
mapping and difference between two models. Moreover, the multiple views of mod-
els also increase the complexity of transformation testing. Other research issues that
will be investigated in the near future include: study on effectiveness of this approach
to detecting errors in transformation specifications, and evaluation of test adequacy
and coverage in the context of model transformation test cases.

We are beginning work to address the debugging issue of challenge 3, as men-
tioned in Sect. 1. To assist in locating the particular transformation specification er-
ror, it is necessary to investigate the concept of a debugger for a model transforma-
tion engine. This would allow the stepwise execution of a transformation to enable
the viewing of properties of the transformed model as it is being changed. The test-
ing tool suite and the debugging facility together will offer a synergistic benefit for
detecting errors in a transformation specification and isolating the specific cause of
the error. All of the tools will be designed to integrate seamlessly within the host
modeling environment.
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Summary. MDA has been around for more than three years already. Nevertheless, besides the
lack of a standard model transformation language to support the MDA vision, there is even
a lack of tool support to implement the platform-specific mappings promoted by the same
MDA. For quite some years now, tool vendors have offered the possibility to generate code
for different programming languages, but the spectrum of tools is very limited when it comes
to generating code for different middleware infrastructures. Parallax, based on aspect-oriented
support and through a well-defined system of plug-ins, addresses this issue by providing a
framework that enables developers to first (re)configure their designs and enhance them with
middleware-specific concerns at different MDA levels of abstraction, and then adapt the im-
plementation of these concerns to different middleware infrastructures and see how they are
actually implemented at the code level. Moreover, developers and middleware vendors can
contribute and enrich Parallax by implementing and providing the community with new plug-
ins for its favorite middleware infrastructures.

1 Introduction

A longstanding goal in software development is to construct applications that are
easily modified and extended. The desired result is to achieve modularization such
that a change in a design decision is isolated to one location of a program. The pro-
liferation of software in everyday life has increased the conformity and invisibility
of software. As the demand for software increases, future requirements will neces-
sitate new strategies for improved modularization in order to support the requisite
adaptations.

Adaptability of software is actually partitioned between two stages: modifiabil-
ity during development, and adaptation during execution. The first type of adaptation
is concerned with design-time, or compile-time, techniques that permit the modifi-
cation of the structure and function of software in order to address changing stake-
holder requirements. To support such evolution, techniques such as aspect-oriented
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programming and object-oriented frameworks are but a few of the ideas that have
shown promise in assisting a developer in the isolation of points of variation and
configurability. The second type of adaptation occurs at runtime during the execu-
tion of the application. This type of adaptation refers to a system’s ability to modify
itself and to respond to changing conditions in its external environment. To accom-
modate such changes, research in meta-programming and reflection have offered
some recourse, especially in the area of adaptive middleware.

With the Internet becoming the de facto way by which corporations extend their
enterprise business, distributed systems become an increasingly important and in-
tegral part of everyday life. To realize distributed systems, middleware is needed
in order to integrate diverse heterogeneous software components and to allow them
to interoperate effectively, addressing at the same time several middleware-specific
concerns that crosscut the boundaries of software components, such as distribution,
concurrency, transactions, security, etc. In this chapter, we address the first type of
adaptation (during development) in the context of middleware-mediated distributed
systems from two different perspectives, one focusing on the (re)configuration of
such systems to incorporate different middleware-specific concerns at the design
level, and the other one focusing on the adaptation of the implementation of these
concerns to different middleware infrastructures at the code level.

To abstract away from the ever emergent middleware infrastructures and to avoid
drowning in their implementation complexities, models are proposed as a far more
accessible and easier means for developers to build, extend, and evaluate applica-
tions than working directly at the code level. The Model Driven Architecture (MDA)
[324, 309], an Object Management Group (OMG) [322] initiative, promotes the sep-
aration of concerns between two modeling dimensions: one focusing on the business
functionality (resulting in Platform Independent Models – PIMs), and the other one
focusing on the implementation of that functionality on a specific middleware plat-
form, such as COM/DCOM/COM+ [292], RMI [406], CCM/CORBA [311, 321],
Jini [408, 305], EJB/J2EE [410, 407], .NET [293], Web Services [461], or other
message-oriented middleware platforms (resulting in Platform Specific Models –
PSMs). While model transformations should be used to refine PIMs into PSMs, code
generators are supposed to map PSMs to concrete middleware-based implementa-
tions, providing thus an elegant approach to adapt PIMs to the peculiarities of the
new middleware infrastructures that do not cease to appear.

Before going any further, referring to the “myth of absolute platform indepen-
dence” and “platform relativism” [136], and in order not to leave any doubts or to
risk any misinterpretations, we would like to make clear that, in the context of this
work, we consider the middleware to be our MDA platform, and not the operating
system, or anything else. Moreover, even though MDA is completely independent of
any modeling language, the Unified Modeling Language (UML) [318, 116] estab-
lished itself as the de facto standard. As a consequence, we only focus on the UML
support for MDA.

Even though it has been around for more than three years already, MDA still re-
mains a vision in many different aspects. In order to proliferate this vision and make
it a reality, and at the same time to facilitate the development of middleware-mediated
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distributed applications, there is an imperative need for tool support. Unfortunately,
so far there is very little in terms of concrete tools that actually support MDA beyond
traditional UML modeling and skeleton-class generation. In order to fill this gap, and
to make a clear stand in the MDA arena, we designed the Parallax framework that
allows developers to look at the system under consideration from different perspec-
tives (or viewpoints) through a well-defined system of plug-ins and based on aspect-
oriented support. Besides presenting the Parallax framework, we will mainly focus
in this chapter on the (re)configuration and adaptation facilities promoted by Paral-
lax, which enables developers to incorporate middleware-specific concerns in their
designs at different MDA levels of abstraction, and to view their enhanced designs
through a prism of middleware platforms and see how middleware-specific concerns
are actually implemented at the code level. Implementation details are discussed as
well, emphasizing the powerful combination of AspectJ aspects with Eclipse plug-
ins, which enables aspects to encapsulate concerns that crosscut plug-in boundaries.

The rest of this chapter is structured as follows. Section 2 introduces the archi-
tecture of Parallax focusing mainly on its core and on the way it handles several
middleware-specific concerns as promoted by the Enterprise Fondue software de-
velopment method on which it relies, Section 3 presents the framework of Parallax
plug-ins that addresses the (re)configuration and adaptation of systems based on As-
pectJ aspects and Eclipse plug-ins. Section 4 discusses the Parallax tool support and
presents typical usage scenarios, Section 5 gives an overview of the currently avail-
able tools promoting the MDA vision and emphasizes the points in which Parallax is
different, and Sect. 6 draws some conclusions and presents future work directions.

2 Parallax and Enterprise Fondue

In this section, after a concise overview of Enterprise Fondue’s terminology, we show
how the MDA-oriented UML profiles, defined for addressing middleware-specific
concerns in the context of the Enterprise Fondue method, form a solid basis for the
Parallax framework in its goal of providing tool support for (re)configuring applica-
tion designs with middleware-specific concerns, on the one hand, and adapting them
to different middleware infrastructures, on the other hand. The architecture and the
core of Parallax are presented as well.

The Enterprise Fondue software development method [395] brings together
four important paradigms in software engineering, namely component-based soft-
ware engineering (CBSE), separation of concerns (SoC), Model-Driven Architecture
(MDA), and aspect-oriented programming (AOP), and shows how they can comple-
ment each other at different stages in the development life cycle of middleware-
mediated enterprise applications. The method identifies five layers corresponding to
different levels of abstraction, each layer addressing specific concerns that pertain to
enterprise applications in general. Model transformations are used to refine design
models inside the same layer, or between different layers, along specific concern-
dimensions.
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For consistency reasons, we tend to use the terms middleware-specific concern-
dimensions in relation with the refining activity (“refining along a dimension”), and
middleware-specific concerns in all other contexts. Nevertheless, both terminologies
refer to the same concepts, i.e., distribution, concurrency, transactions, security, and
so on.

For the MDA approach to software development to become a reality for dis-
tributed enterprise systems, MDA needs to provide support for understanding, de-
scribing, and implementing such middleware-specific concerns, also referred to as
pervasive services in MDA’s PIM terminology [309]. However, the current UML
does not provide any specific or standard support for modeling pervasive services.
What it does offer, is the possibility to “extend” the UML metamodel through, and
only through, profiling, which defines how specific UML model elements are cus-
tomized and extended with new semantics as if they were instances of new “virtual”
metamodel constructs.

The Enterprise Fondue method defines MDA-oriented UML profiles that address
middleware-specific concerns at different levels of abstraction. It also promotes a
systematic approach to addressing pervasive services in an MDA-compliant man-
ner, at different levels of abstraction, through incremental refinement steps along
middleware-specific concern-dimensions according to the proposed UML profiles.
A complete example has already been carried out for the distribution concern. The
UML-D Profiles proposed in [394] address the distribution concern in an MDA-
oriented fashion at three different levels of abstraction: platform-independent level,
abstract realization level, and concrete realization level. The CORBA [321] technol-
ogy was used in [394] to illustrate how the refinement process is applied to a concrete
example.

Figure 1 reconsiders the UML-D profiles in the context of this chapter and de-
fines the RMIDistributionRealizationProfile, which addresses the realization of the
distribution concern when the implementation is supposed to use the RMI technology
[406]. It takes advantage of the AbstractDistributionRealizationProfile

by adapting its abstract concepts to the RMI technology, so that a code generator has
enough information to generate the necessary distribution code. Since we kept un-
changed the first two MDA-levels of abstraction in the hierarchy presented in [394],
we will not explain them once again here. We show nevertheless the entire hierar-
chy for the sake of completeness and because we need the DistributionProfile
when configuring designs with distribution elements at a platform-independent level,
as we will see in Sect. 3.2.1.

The «RMINameExposition» stereotype represents a «NameExposition» using
the RMI technology. It extends the «NameExposition» but does not add particular
information to it. The idea is to state clearly that a «PublishedServant» instance
is registered by name using the RMI technology. The same holds for the «RMIReg-
istry» stereotype that extends the «NamingRegistry». In order for an actor of the
environment to find the «RMIRegistry», we add the host and port tag defini-
tions. An OCL [456, 457] constraint ( 4©) enforces that these two stereotypes work
together and only together. This constraint also enforces that exposition names are
all different within the context of a «Publisher».
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Fig. 1. RMI distribution realization profile
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The UML-D profiles are just an example of how the Enterprise Fondue method
addresses middleware-specific concerns at different MDA-levels of abstraction. Other
such profiles have already been defined for other middleware-specific concerns,
such as concurrency and transactions, moving towards defining MDA-oriented UML
profiles for middleware services, or more precisely middleware-specific concerns
(UML-MS profiles).

Based on the solid foundations of the MDA-oriented UML profiles for addressing
different middleware-specific concerns at several levels of abstraction in the context
of the Enterprise Fondue method, and in order to provide developers with integrated
tool support that allows them to incrementally apply these profiles for refining their
design models along middleware-specific concern-dimensions at different stages in
the development life cycle of distributed enterprise applications, we designed the
Parallax framework [401]. As it is promoted by its name as well, Parallax1 enables
developers to view the system under development from different perspectives (or
viewpoints) through a well-defined system of plug-ins and based on aspect-oriented
support. Developers may choose to (re)configure their designs in order to incorpo-
rate middleware-specific concerns at different MDA-levels of abstraction, and then
to adapt their enhanced designs to different programming languages and different
middleware infrastructures depending on the plug-ins that have been loaded. As we
will see later, by such an adaptation, specific code will be generated (out of de-
sign elements) in a programming language and for a middleware infrastructure, if
middleware-specific elements have to be addressed as well.

The remaining sections of this chapter present in more detail the Parallax frame-
work, focusing mainly on its system of plug-ins and on the way they address both
the (re)configuration and adaptation of existing systems.

2.1 The Architecture of Parallax

The architecture of Parallax shown in Fig. 2 introduces the basic components
building up the Parallax framework. The core of Parallax (PrlxCore) is respon-
sible for storing models (loaded from XMI files) into internal object-oriented mod-
els (PrlxModels) that will further be used to query all needed information. The
PrlxCore along with the PrlxMetamodel are discussed in more details in Sect. 2.2.

Since Parallax was designed and implemented as an Eclipse plug-in, it has to
define its own Eclipse perspective. PrlxPerspective represents the Parallax per-
spective of the Parallax plug-in, containing several views (PrlxViews) that enable
developers to perform specific operations depending on the view they are currently
browsing. The complete set of views that are currently offered inside Parallax is
presented in Sect. 4 with brief descriptions of their intended use and the provided
functionality.

PrlxUtilities groups all sorts of classes that serve various purposes, such as
support for the highlighting facility, the specialization of the character parser (scan-
ner and rules), some logging facilities using aspects, support for managing icons and
1 [Webster] the apparent change in the position of an object resulting from the change in the

direction or position from which it is viewed
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Parallax
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PrlxMetamodel

PrlxPerspective
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PrlxExtensionPoints

«plug-into»

Fig. 2. The architecture of Parallax

color objects, since their total number that can be displayed in the same time is re-
stricted by the underlying operating system, and thus they have to be disposed of
when no longer used, and so on.

Parallax plug-ins (PrlxPlugins) represent the most important part of the Paral-
lax framework providing the developer with support for loading application designs
exported as XMI files from different UML modeling tools, for configuring the de-
veloper’s designs to incorporate middleware-specific concerns at different MDA lev-
els of abstraction, and for adapting the enhanced designs to different programming
languages and different middleware infrastructures depending on the plug-ins that
have been loaded. The main section of this chapter (Sect. 3) is entirely dedicated
to the framework of PrlxPlugins that we designed around the Parallax platform,
and less on the extension points (PrlxExtensionPoints) defined in order to al-
low PrlxPlugins to plug new functionality into Parallax. The latter information
is rather spread throughout the entire chapter and can be inferred by looking at the
description of the PrlxPlugins and their impact on Parallax.

2.2 The Parallax Core (PrlxCore) and the Input Adaptor Plug-ins
(PrlxInputAdaptorPlugins)

From the very beginning of this work, Parallax was intended to load application
designs exported as XMI files. As a consequence, it became immediately clear that
the model information read from such XMI files will have to be stored internally in
object-oriented models in order to provide an easy mechanism to query and to deliver
such information to other parts of Parallax that require it.
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Figure 3 illustrates the model hierarchy of Parallax presented at two different lay-
ers of the four-layer metamodeling architecture [318], namely the metamodel (M2)
and the model (M1) layers.

UML Metamodel

PrlxMetamodel

PrlxModel

«subset»

«instance of»

«apply»

M2

M1

UML-MS Profiles for
Middleware-Specific Concerns

�

Fig. 3. The model hierarchy of Parallax

Starting from the top, the «subset» dependency shows that the Parallax meta-
model (PrlxMetamodel) is just a subset of the full UML metamodel, excluding,
for instance, some of the Behavioral Elements packages, such as the Use Cases, the
State Machines, or the Activity Graphs packages, which are not needed for the in-
tended purpose of Parallax, i.e., generating code targeted at different programming
languages and different middleware infrastructures relying on class diagrams (for
the static structure) and on the interactions described in collaboration/sequence dia-
grams (for the behavior), while also taking into account the UML-MS profiles when
applied to a design. Moreover, even for the elements that we considered to include in
the PrlxMetamodel, e.g., UML:Class, UML:Operation, etc., we decided to drop
certain attributes or features, such as isActive, isSpecification, or isQuery,
simply because they are not needed in the code generation process.

Further down, at the M1 layer, a Parallax model (PrlxModel) incorporates in-
stances from the PrlxMetamodel and applies extensions defined in the UML-MS
profiles for the different middleware-specific concerns that we want to address. It
is at this layer that a model loaded from an XMI file will be stored in objects that
are instances of the PrlxMetamodel classes and that are filled with information
found in the XMI input file. This means, for example, that an object instance of the
PrlxInterface class (from the PrlxMetamodel level) is responsible for encap-
sulating a concrete UML:Interface read from the loaded XMI. Note that the (UML
2.0) base class arrow notation (Fig. 3 1©) ends on the Parallax metamodel, instead
of the UML metamodel, only because we want to stress that all the base classes that
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were considered for defining the stereotypes in the UML-MS profiles must be part
of the subset included in the PrlxMetamodel.

In order to avoid dealing with the peculiarities of the different XMI [308, 313,
320] and UML [318, 116] specifications, we did not want to parse the XMI input files
ourselves. Instead, we considered the support provided by third-party products, such
as the Eclipse Modeling Framework [99], or the Meta-Data Repository (MDR) [409].
The former one being ECore based [100] and the latter one being MOF based [312],
and taking into account the lack of specification behind ECore as opposed to MOF,
on the one hand, and our intent to support XMI files exported from the currently used
UML modeling tools (most of them MOF-based), on the other hand, we decided to
choose MDR as our model repository tool. Implementing the Java Metadata Interface
(JMI) specification [231], MDR takes as input a specific MOF-based metamodel (as
an XMI file), and generates a complete JMI-based repository (as Java source files)
for storing, managing, and querying information from models that are compliant with
the considered metamodel. In the concrete case of Parallax, we provided MDR with
the PrlxMetamodel, and hence MDR generated the complete JMI-based repository
for storing, managing, and querying PrlxModels, as illustrated graphically in Fig. 4.
All the PrlxViews, along with the rest of Parallax, rely on these generated interfaces
in order to access the information they need from the PrlxModel in order to generate
their own content.

However, in order to take advantage of the XMI Reader and Writer implemen-
tations provided by MDR, for automatically reading XMI files into PrlxModels

(deserialization), and saving PrlxModels into XMI files (serialization), the XMI
file itself and the JMI-based repository must be compliant with the same metamodel.
Unfortunately, this is not the case when trying to load application designs exported
as XMI files from different UML modeling tools, since such XMI files are compli-
ant with the UML metamodel supported by the modeling tool. As a consequence,
in order to have automatic loading and saving facilities between UML-compliant
XMI files and PrlxModels, adaptors have to be implemented between the different
JMI-based repositories for UML 1.x or 2.0 models, and the JMI-based repository for
PrlxModels, as shown in Fig. 4. To be more precise, since none of the currently
available UML modeling tools (to our knowledge) support one entire UML specifi-
cation, and mainly because their XMI export facilities are not fully compliant with
the UML Model Interchange, each UML modeling tool introduces new variation
points in the adaptation process, as we tried to illustrate in Fig. 4. Therefore, the
PrlxInputAdaptorPlugins, which are responsible for the adaptation step that is
necessary when loading XMI files exported from different UML modeling tools into
internal PrlxModels, have at least two dependency dimensions (2-DD); they are at
the same time:
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Fig. 4. The Parallax input support (PrlxInputAdaptorPlugins)

• CASE-tool-provider dependent
e.g., IBM Rational Rose, Poseidon, Borland Together, Objecteering, ArgoUML,
etc.; sometimes, as in the case of Rose, it is the CASE-tool-XMI-exporter
(Unisys) that introduces the dependency;

• UML-specification dependent
e.g., UML 1.x, UML 2.0, etc.

For some repositories, the XMI specification (e.g., XMI 1.1, 1.2, 2.0, etc.) might
be a third dependency dimension. However, since we use MDR for our model reposi-
tory, and since MDR transparently handles this dimension, we decided not to include
it in the list of dependencies for the time being.

For each CASE-tool-provider, the associated PrlxInputAdaptorPlugins are
responsible for reading the header of the XMI input file, identifying the corre-
sponding (pretended) UML-specification compliancy, reading the XMI file into
the JMI-based repository for the appropriate UML 1.x or 2.0 models, and adapt-
ing it to the JMI-based repository for PrlxModels. Following this pattern, and
relying on the prlxinputadaptors extension point that has been defined and
published for the PrlxCore, the “input” facilities of Parallax can be easily ex-
tended to support new XMI file formats exported from different UML modeling
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tools and compliant with different UML specifications, provided that the appropri-
ate PrlxInputAdaptorPlugin has already been implemented. Currently, we are
able to load application designs exported as XMI 1.1 (UML 1.3, UML 1.4) and XMI
1.2 (UML 1.4) files from several UML modeling tools, such as IBM Rational Rose,
Borland Together, or Poseidon. We plan to include in this list the Objecteering and
ArgoUML tools as well.

As a further step down the road, we would like to extend the input facilities of
Parallax and allow developers to import Java/C++/C# projects into Parallax. Besides
defining the metamodels for Java/C++/C#, special parsers will have to be imple-
mented to extract the information needed from the source code of such projects and to
fill the JMI-based repositories for Java/C++/C# models accordingly. Moreover, adap-
tors will have to be implemented between these repositories and the JMI-based repos-
itory for PrlxModels as well. Once such projects are loaded into PrlxModels, de-
velopers will be able to use Parallax just as if the design model had been loaded from
an XMI file. We consider that such a reverse engineering facility would be very use-
ful for the huge number of legacy applications that exist out there but do not have any
explicit design to start with. Developers might not want to invest in a CASE tool for
performing the reverse engineering step, but they would like nevertheless to distrib-
ute their applications, or to incorporate other middleware-specific concerns, without
too much effort.

3 The Framework of Parallax Plug-ins (PrlxPlugins)

After a brief overview of the main concepts and paradigms involved in the Paral-
lax project, and after some details explaining the technical support for the Parallax
approach, we present in this section the framework of Parallax plug-ins that ad-
dresses the (re)configuration and adaptation of systems, based on AspectJ aspects
and Eclipse plug-ins.

Separation of concerns [343] and modularization are fundamental techniques of
software engineering. Decomposing software into smaller, more manageable, and
comprehensible parts, each of which encapsulates and addresses a particular area
of interest, called a concern, is a well-proven method for developing applications
that are easy to configure, adapt, or extend according to changes in the requirements
specification.

The Eclipse Platform [98] is an integrated development environment (IDE) “for
anything, and for nothing in particular”, as it is stated in one of the technical
overviews [325]. The Eclipse Platform is built on a mechanism for discovering, in-
tegrating, and running modules, called plug-ins, which extend in some way the Java
notion of packages. Coded in Java, a plug-in is the smallest Eclipse Platform func-
tion unit that can be developed and delivered separately. Each plug-in has a manifest
file, plugin.xml, declaring its interconnections to other plug-ins. The interconnec-
tion model is simple: a plug-in declares any number of named extension points, and
any number of extensions to one or more extension points in other plug-ins. A plug-
in’s extension points can be extended by other plug-ins. Except for a small kernel,
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known as the Eclipse Core Runtime, all of the Eclipse Platform’s functionality is lo-
cated in plug-ins, which makes Eclipse the most extensible platform ever designed.
For more details about contributing to Eclipse, its principles, patterns, and plug-ins,
refer to [141].

Aspect-oriented programming (AOP) [253] has been proposed as a technique
for improving separation of concerns in software. This approach makes it possible
to separately specify various kinds of concerns and modularize them into separate
units of encapsulation, called aspects. One can deal with both the concerns and the
modules that encapsulate them at different levels of abstraction, not only at the code
level. AspectJ [252, 97] is a general-purpose aspect-oriented extension to Java. It de-
fines one new concept, a join point, and adds a few new constructs, such as pointcut,
advice, introduction, and aspect. Join points are well-defined points in the program
flow; pointcuts are a means of referring to collections of join points and context
values at those join points; advices define code that is executed when pointcuts are
reached during execution; introductions can be used to affect the static structure of
Java programs, namely the members of its classes and the relationships between
classes; and aspects are AspectJ’s modular units of cross-cutting implementation,
defined in terms of pointcuts, advices, introductions, and ordinary Java member dec-
larations. Similar extensions exist for other programming languages, such as C++,
C, Smalltalk, or Ruby.

When developing applications using AspectJ, a compilation or weaving step is
always required. Typically, the AspectJ compiler would take all the parts of the ap-
plication (aspects, sources, classes, and libraries) and produce a complete weaved
(and enhanced) system ready for running. This basic assumption breaks with the
modularization approach promoted by Eclipse plug-ins. When Eclipse plug-ins are
developed, the compiler typically knows all the source code of the plug-in itself and
the byte code of the required plug-ins – and no more than that. As a consequence, an
aspect would have to be weaved in the classes of a plug-in in order to obtain first the
enhanced plug-in, which will be further loaded into Eclipse. Because of this inter-
mediate weaving step, aspects can only define pointcuts that are completely inside a
single Eclipse plug-in. To tell the whole truth, they can define more, but the weaving
functionality of the AspectJ compiler will find only those targets of the pointcuts
that are inside the plug-in in which the aspect is defined, which amounts to a single
plug-in, as mentioned before.

In order to overcome this drawback of Eclipse plug-ins with respect to AspectJ
support, and to allow developers to define pointcuts beyond the boundaries of plug-
ins, the AspectJ-Enabled Eclipse Core Runtime was implemented [278]. Without
entering too much into implementation details, we just want to mention that load-
time weaving is used to weave aspects into classes at the moment when these classes
are actually loaded into the virtual machine (in the case of Java). Although load-time
weaving was not available for the AspectJ 1.0 language, the byte code weaving im-
plementation of AspectJ 1.1 allows load-time weaving to be realized for the complete
AspectJ 1.1 language, i.e., all AspectJ 1.1 constructs lend themselves to load-time
weaving functionalities. Because the class-loading mechanism of the Eclipse Core
Runtime was not designed to be modified or enhanced through standard Eclipse
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<?xml version="1.0" encoding="UTF-8"?>
<plugin
   id="edu.demo.prlxaspect"
   name="PrlxAspect Plugin"
   version="1.0.0">

   <runtime>
      <library name="prlxaspect.jar"/>
   </runtime>
   <requires>
      <import plugin="org.aspectj.weavingruntime"/>
   </requires>

   <extension
         id="demoaspect"
         name="Demo Aspect"

point="org.aspectj.weavingruntime.aspects">
      <aspect
            class="edu.demo.PrlxAspect">
      </aspect>
   </extension>

</plugin>

Fig. 5. An eclipse plug-in promoting an aspect in its plugin.xml

plug-ins, a basic load-time byte code modification hook had to be inserted in the
class-loader itself. It is through this special hook that the weaving functionality is
injected exactly when the byte code of a class is loaded. For defining the weav-
ing functionality, a new extension point for the weaving runtime is provided, called
aspects, which allows other Eclipse plug-ins to define, in their plugin.xml de-
scription, the aspects they want to promote for weaving. Such an aspect-promoting
Eclipse plug-in is illustrated in Fig. 5, which shows how an Eclipse plug-in called
PrlxAspectPlugin defines an extension for the aspects extension point in order
to promote the edu.demo.PrlxAspect aspect. The AspectJ-Enabled Eclipse Core
Runtime is available for download at [279] along with more documentation on its
implementation, installation, and some running examples.

Figure 6 depicts in a graphical way the difference between the standard Eclipse
Core Runtime support for aspects and its AspectJ-enabled counterpart. We used num-
bers in order to show the sequencing of operations and to emphasize how in the stan-
dard version the aspect is weaved in only one plug-in ( 1a©), which is further plugged
into Eclipse ( 2a©), while in the AspectJ-enabled version, the aspect is first plugged
into the Eclipse class loader ( 1b©) and then it is weaved in all subsequently loaded
classes ( 2b©), and thus all subsequently loaded plug-ins. Note that in order to achieve
such a functionality, the aspect PrlxAspect had to be encapsulated in a standard
Eclipse plug-in PrlxAspectPlugin, which extends the aspects extension point,
just like it was defined in Fig. 5.

Thanks to the enhanced (but compatible) version of the Eclipse Core Runtime,
aspects may now be designed using pointcuts that crosscut plug-in boundaries, also
referred to as cross-plug-in pointcuts, just like the currently supported cross-objects



250 Raul Silaghi and Alfred Strohmeier

pointcuts; more importantly, such aspects may be implemented and compiled sep-
arately, and may be modularized in stand-alone Eclipse plug-ins without the need
for weaving them explicitly in their target plug-ins, following therefore the general
idea behind plug-ins in the Eclipse world. Cross-cutting concerns that spread across
the boundaries of plug-ins may nevertheless be encapsulated in stand-alone plug-
ins, which define and promote aspects that address the cross-cutting concern under
consideration across several plug-ins and could affect their code accordingly.

Based on the previously introduced concepts and with the technological sup-
port of the AspectJ-Enabled Eclipse Core Runtime, we designed and implemented
the framework of Parallax plug-ins (PrlxPlugins) illustrated in Fig. 7. Dependen-
cies between plug-ins and their impact on other constituent parts of the Parallax
platform are shown in Fig. 7 as well. Since all Parallax plug-ins (PrlxPlugins)
are specifically designed to serve some developer needs, they will all have to de-
fine entries in one of the views (PrlxViews) building up the Parallax perspec-
tive (PrlxPerspective) so that developers can invoke them easily. More details
about the intended purpose of the different PrlxViews and their entries will be
given in Sect. 4 when describing the Parallax tool support. Nevertheless, there
are some PrlxPlugins that go beyond the PrlxViews and impact other graph-
ical user interface elements, such as contextual popup menus, as is the case of
PrlxConcernAspectPlugins. These cases will be presented to some extent in
the subsections dedicated to the corresponding PrlxPlugin.

Taking into account that the PrlxInputAdaptorPlugins have already been
described in Sect. 2.2, the remainder of this section discusses in more detail the other
three major parts of the framework of plug-ins, namely the plug-in support for code
generation (PrlxCodeGeneratorPlugins), the plug-in support for addressing
middleware-specific concerns at the design level (PrlxConcernAspectPlugins
and PrlxConcernTechnologyAspectPlugins), and the plug-in support for ad-
dressing middleware-specific concerns at the implementation level (PrlxConcern-
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Fig. 6. Eclipse Core Runtime: loading plug-ins and weaving aspects
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PlatformAspectPlugins). We end with a discussion that shows how Parallax ad-
dresses both the (re)configuration and the adaptation of systems through the proposed
framework of plug-ins.

3.1 Code Generator Plug-ins (PrlxCodeGeneratorPlugins)

Code generator plug-ins are pure standard Eclipse plug-ins, without promoting any
aspects for the weaving runtime. By taking the code generation support out of
the PrlxCore, and by defining and publishing an extension point for it, called
prlxcodegenerators, developers can start writing their own plug-ins for gen-
erating code (PrlxCodeGeneratorPlugins) for their favorite programming lan-
guage, e.g., Java, C++, C#, etc. At the same time, instead of having only one
code generator for a programming language, several plug-ins may exist for gen-
erating code for the same programming language. Moreover, the aspects defined
in PrlxConcernPlatformAspectPlugins (as we will see in Sect. 3.2.2) will
be weaved in each PrlxCodeGeneratorPlugin as their code gets loaded by
the AspectJ-Enabled Eclipse Core Runtime, enhancing the code generators with
middleware-specific code generation capabilities. It will be the responsibility of
the PrlxConcernPlatformAspectPlugins to match the programming language
they support with the programming language promoted by PrlxCodeGenerator-

Plugins, and to avoid, for instance, weaving CORBA code generation capabilities
for the Java language inside a PrlxCodeGeneratorPlugin for the C# language.

PrlxPerspective

PrlxModel

PrlxPlugin

PrlxCodeGeneratorPlugin

«read»

PrlxInputAdaptorPlugin

PrlxConcernAspectPlugin

PrlxAspectPlugin

PrlxAspect

«promote»

PrlxConcernTechnologyAspectPlugin

«require»

PrlxConcernPlatformAspectPlugin

«weave in»

«require»

PrlxJavaPlugin

PrlxCppPlugin

PrlxCsharpPlugin

PrlxDistributionAspectPlugin

PrlxConcurrencyAspectPlugin

PrlxTransactionsAspectPlugin PrlxDistributionRmiSunJavaAspectPlugin

PrlxDistributionCorbaOpenorbJavaAspectPlugin

PrlxDistributionCorbaVisibrokerJavaAspectPlugin

PrlxDistributionEjbWebsphereJavaAspectPlugin

PrlxDistributionRmiAspectPlugin

PrlxDistributionCorbaAspectPlugin

PrlxDistributionEjbAspectPlugin

«enhance»

«weave in»

«weave in»

«fill»

Fig. 7. The framework of Parallax plug-ins
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3.2 Parallax Aspect-Plug-ins (PrlxAspectPlugins)

Parallax aspect-plug-ins are the special type of plug-ins supported only by the
AspectJ-Enabled Eclipse Core Runtime. Besides standard Eclipse plug-in function-
alities, they also promote AspectJ aspects (PrlxAspects) to the weaving runtime
through the aspects extension point.

The main purpose of these aspects is to act as “model transformations” inside
the Parallax platform. They rely on the UML profiles defined for each middleware-
specific concern in the context of the Enterprise Fondue method, and they apply these
profiles inside Parallax at different MDA levels of abstraction, just like MTL [137]
model transformations did in [394].

UML profiles [318, 116] define a coherent set of extensions for a specific do-
main or purpose. Each UML standard extension mechanism specifies how UML
model elements can be customized and extended with new semantics. For instance,
a stereotype creates a “virtual” metaclass with new meta-attributes and additional
semantics.

As one may notice, the main emphasis in all these definitions is placed on addi-
tional semantics, purpose, or meaning that these extensions add to a design model.
Because of this new semantics, all the modules of Parallax that have to deal with
such new elements sooner or later need to be adapted accordingly. It is the job of
PrlxAspects to perform such an adaptation that crosscuts different Parallax mod-
ules. Moreover, each such aspect defines a different semantics for a stereotype de-
pending on the level of abstraction at which it addresses the stereotype, and thus
the cross-cut modules might not be the same, even though the same stereotype
is addressed. Such a difference is illustrated in Sect. 3.2.1 and Sect. 3.2.2, where
PrlxConcernAspectPlugins and PrlxConcernTechnologyAspectPlugins

address middleware-specific concerns at the design level, more precisely at the PIM
and PSM levels of abstraction respectively (acting on the model), while PrlxCon-
cernPlatformAspectPlugins address the same middleware-specific concerns
but at the implementation level (acting on code generators). A concrete example
is considered, namely addressing the «Distributed» stereotype (as defined in
Fig. 1 1©) at the three different levels.

To conclude, the rule, referred further on to as the PrlxExtensionRule, is rather
simple: for every new semantics that a developer introduces through UML extension
mechanisms (encapsulated in UML profiles), the developer will have to define asso-
ciated PrlxAspects that adapt the Parallax platform accordingly, such that when
this new semantics is actually addressed or needed, Parallax has all the necessary
information and support in order to address or to provide it immediately. For ex-
ample, at the implementation level, stereotyping typically impacts the definition of
the model element itself, the definition of its contents, and its usage by other model
elements. In the concrete case of the DistributionProfile, the impacts of the
«Distributed» stereotype on Interface model elements are illustrated in more
details in Sect. 3.2.2 at the RMI implementation level of abstraction.

The MDA-oriented hierarchy of UML-D profiles illustrated in Fig. 1 relies en-
tirely on UML’s extension mechanisms. Moreover, since the structure of the XMI
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(for exchanging UML models) is based on the UML metamodel, which incorpo-
rates extension mechanisms as well, there is no problem in exporting design models
that were refined according to the profiles introduced in Fig. 1, i.e., models that
contain new stereotypes, tag definitions, or tagged values. When loading such en-
hanced models into Parallax, new object instances of the PrlxStereotype class
(from the PrlxMetamodel) will be created and filled with the information found
in the XMI that defines the stereotype under consideration. Moreover, since each
UML:Core:ModelElement may be associated with several stereotypes, each class
in the PrlxMetamodel has its own list of stereotypes, which is also filled when
loading an XMI model into Parallax.

Therefore, in the case of the distribution concern and the corresponding UML-
D profiles, we are able to load and store in our internal models information about
distribution without having plugged into Parallax any distribution-related plug-ins in
advance. It is a straight forward support that is provided when models are compliant
with the UML metamodel. Saving is not a problem either because we deal with the
same stereotypes, we already know what they contain, and there is a standard way
of serializing stereotypes into XMI. However, besides loading and saving, there is
no more than that. Developers cannot modify any information related to distribution.
Everything is treated in a standard way, and there are no special functionalities.

3.2.1 Concern-Oriented and Concern-on-Technology Aspect-Plug-ins
(PrlxConcernAspectPlugins, PrlxConcernTechnologyAspectPlugins)

From the model transformation point of view, we could say that PrlxConcern-
AspectPlugins and PrlxConcernTechnologyAspectPlugins refine Parallax
along middleware-specific concern-dimensions, enabling it to store, manage, and
query middleware-specific concern-related information at the PIM, respectively
PSM, MDA levels of abstraction.

By extending the prlxprofiles extension point in the Parallax core (Prlx-
Core), PrlxConcernAspectPlugins and PrlxConcernTechnologyAspect-

Plugins are responsible for providing Parallax with the corresponding UML pro-
files that address middleware-specific concerns at the platform-independent and
platform-specific levels of abstraction, respectively. It is these very UML-MS pro-
files, through the new stereotypes they define, that enable the internal PrlxModel
to store and manage middleware-specific concern-related information. One should
notice that the dependency between profiles («merge» in Fig. 1) implies a depen-
dency between plug-ins («require» in Fig. 7), since the stereotypes defined at the
PIM level must have been already loaded in order for the PSM-level stereotypes to
be able to extend them. An aspect defined in the PrlxCore is responsible for col-
lecting all such prlxprofiles extensions and for loading the encapsulated profiles
immediately after a design model has been successfully loaded.

By extending the aspects extension point, PrlxConcernAspectPlugins and
PrlxConcernTechnologyAspectPlugins promote AspectJ aspects, which de-
fine explicit high-level interfaces that enable developers to easily query the inter-
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nal object-oriented PrlxModel for the middleware-specific concern-related infor-
mation.

Moreover, relying on the standard Eclipse plug-in functionalities, these plug-ins
also have the responsibility to enhance the Parallax graphical user interface (GUI) so
that developers may apply the profiles that have been loaded, i.e., configure stereo-
types and tag definitions, through simple GUI interactions.

In the particular case of the distribution concern and considering its associ-
ated platform-independent profile (DistributionProfile) and RMI platform-
specific profile (RMIDistributionRealizationProfile) as defined in Fig. 1,
while the PrlxDistributionAspectPlugin and PrlxDistributionRmiAs-

pectPlugin are loaded into Parallax and the encapsulated aspects are weaved in
different constituent parts of Parallax, the following actions occur:

• Load the stereotypes promoted by the DistributionProfile and RMIDis-

tributionRealizationProfile into the PrlxModel (if not already there)
in order to be able to apply them to model elements.

• Insert new entries in the Concerns and Technologies views of the Parallax per-
spective (see Fig. 11 5© and 7©).

• Provide the “Distribute...”, “Create Servant...”, and “Servant...” contextual pop-
up menu options on interfaces, classes, and objects, respectively, in order to al-
low developers to distribute interfaces (i.e., stereotype them «Distributed»)
and to create servant objects (i.e., stereotype them «Servant»). In order to
further assist the developer in the refinement process, several inference algo-
rithms are running behind the scenes to ensure the consistent application of the
DistributionProfile, e.g., for each «Distributed» interface that a devel-
oper enables through the appropriate contextual popup menu option, a recursive
algorithm infers all the other interfaces that must be «Distributed» as well
because of their involvement in the newly enabled distributed setting. Similarly,
when enabling a «Distributed» interface or a «Servant» object, the corre-
sponding list of all possible «Servant» objects, or «Distributed» interfaces
respectively, is presented to the developer as a result of an inference algorithm
so that the developer can make a selection immediately, reducing in this way the
risk for inconsistencies.

• Provide a configuration tab that would allow developers to configure distribution-
specific realization elements on the RMI technology, such as the name of the
«Servant» object, and the host and the port of the «RMIRegistry». This
PSM-level deployment configuration information will be saved in a special
technology-dependent XML-Config-File in order to give the possibility for
easy deployment customization, as explained in [394]. It is the RMI-XML-Con-
fig-File that the client and the server applications will both read at startup time
in order to know how to find each other; the distribution-on-RMI configuration
tab is triggered from the Technologies view.

• Define the special semantics for the newly loaded stereotypes in the particular
contexts of these aspect-plug-ins and in accordance with the MDA levels of
abstraction that they address (i.e., the PIM and PSM levels), as requested by
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the PrlxExtensionRule introduced in Sect. 3.2; for instance, the example in
Fig. 8 shows how the PrlxDistributionAspect enhances the PrlxModel

by defining a new interface (IDistributionPrlxInterface) for querying
the PIM-level distribution-related information from a PrlxInterface. A sim-
ilar interface is defined for the PrlxObject in order to be able to identify the
«Servant» object. Note the relationship between the classes on which we are
defining these extra interfaces and the metaclasses that have been extended in
the DistributionProfile; without entering into details at this time, similar
interfaces are defined by the PrlxDistributionRmiAspect for querying the
PSM-level RMI distribution-related information from the PrlxModel.

• Enable the highlighting of distribution-related information across all currently
opened views, e.g., we look in the XMI for the «Distributed» and «Servant»
stereotypes and for all elements that have been stereotyped with one of them, and
we highlight all these elements with the color that is associated to the distribution
concern.

• Provide special distribution-related icons for «Distributed» and «Servant»

model elements in order to emphasize them even in the absence of distribution
highlighting.

PrlxInterface

IDistributionPrlxInterface

 (MDR-generated, JMI-compliant interface)

public aspect PrlxDistributionAspect{
  // on PrlxInterface

  public interface IDistributionPrlxInterface {
    public boolean isDistributed();
  }

declare parents:
    PrlxInterface extends IDistributionPrlxInterface;

  public boolean PrlxInterface.isDistributed() {
    Iterator it = this.getStereotypes().iterator();
    for ( ; it.hasNext(); ) {
      PrlxStereotype s = (PrlxStereotype) it.next();
      if (s.getName().equals("Distributed")) return true;
    }
    return false;
  }
}

Fig. 8. Code snippet of the PrlxDistributionAspect

Several constraints that have been defined on the MDA-oriented hierarchy of
UML-D profiles in [394] are enforced inside Parallax as well, such as «Distri-
buted» should only be applied to UML:Interfaces, «Servant» should only be
applied to UML:Objects, «Distributed» interfaces cannot exist without a «Ser-
vant» object, «Servant» objects cannot exist without at least one «Distribu-

ted» interface, the exposed names within the context of a «Publisher» (in this
case, an «RMIRegistry») must all be different, and so on.
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The entire analysis presented in this subsection for the distribution-on-RMI
case can be extended to other middleware-specific concerns and other middle-
ware technologies through their own associated PrlxConcernAspectPlugins and
PrlxConcernTechnologyAspectPlugins respectively, e.g., concurrency, trans-
actions, distribution-on-CORBA, transactions-on-EJB, etc. If we look at the in-
heritance model in the top-right corner of Fig. 8, other PrlxConcernAspect-

Plugins might define their own interfaces (at the same level as IDistribution-
PrlxInterface) in order to query concern-related information, provided that the
UML:Interface model element has been semantically extended in the profiles for
those concerns.

3.2.2 Concern-on-Platform Aspect-Plug-ins
(PrlxConcernPlatformAspectPlugins)

Concern-on-platform aspect-plugins address middleware-specific concerns at the im-
plementation level. They are weaved in code generator plug-ins, enhancing the code
generators with middleware-specific code generation capabilities. More precisely,
they address the implementation of those model elements that have been previously
refined according to a UML profile for a middleware-specific concern, i.e., model el-
ements that have been previously refined through a PrlxConcernAspectPlugin

and PrlxConcernTechnologyAspectPlugin. As an immediate consequence,
one may infer that, for a particular middleware-specific concern, a dependency
must exist between the corresponding PrlxConcernAspectPlugin, PrlxCon-
cernTechnologyAspectPlugin, and PrlxConcernPlatformAspectPlugin,
since the former two need to weave in the model certain information that will
be further read by the latter one. Another obvious dependency exists between
PrlxCodeGeneratorPlugins and PrlxConcernPlatformAspectPlugins,
since the latter ones require the presence of appropriate code generators (with re-
spect to the supported programming language) in order to be able to enhance their
behavior. While both such dependencies are illustrated in Fig. 7, one may enforce
them by defining appropriate requires entries at the plugin.xml level of Eclipse
plug-ins, as shown in Fig. 5.

Because of the different layers promoted by the Enterprise Fondue method [395],
each PrlxConcernPlatformAspectPlugin has four dependency dimensions (4-
DD); it is at the same time:

• middleware-concern dependent
e.g., distribution, concurrency, transactions, security, etc.;

• technology dependent
e.g., RMI, EJB/J2EE, CORBA, .NET, Web Services, Messaging, etc.;

• platform dependent
e.g., WebSphere, WebLogic, JBoss, JOnAS, Axis, JMS, MQSeries, MSMQ;

• language dependent
e.g., Java, C#, C++, C, Smalltalk, etc.
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Examples of such plug-ins are: plug-in for distribution, with EJBs, on IBM Web-
Sphere, using Java; or, plug-in for transactions, with CORBA, on Borland VisiBro-
ker, using C++.

In the particular case of the distribution concern and its associated
UML-D profiles as defined in Fig. 1, while the PrlxDistributionRmiSunJava-
AspectPlugin is loaded into Parallax and the encapsulated PrlxDistribution-

RmiSunJavaAspect is weaved in different constituent parts of Parallax (more pre-
cisely in the PrlxJavaPlugin), the following actions occur:

• Insert an entry in the Platforms view of the Parallax perspective (see Fig. 11 8©).
• Define the special semantics for the newly loaded stereotypes in the context of

this particular aspect-plug-in and in accordance with the currently addressed
MDA level of abstraction (i.e., the implementation level), as requested by the
PrlxExtensionRule introduced in Sect. 3.2. The example in Fig. 9 shows how
the PrlxDistributionRmiSunJavaAspect modifies the PrlxJavaCodeGe-
nerator by prescribing it to add java.rmi.Remote in the extends clause of
all interfaces that have been declared as «Distributed» by a previous refine-
ment, i.e., all interfaces for which the isDistributed() method returns true.
One should notice that we relied on the interface introduced by the PrlxDis-

tributionAspect, i.e., the method isDistributed(). In a similar way, the
signatures of the methods defined in «Distributed» interfaces are enhanced
to throw java.rmi.RemoteException, and try/catch blocks are generated
around all remote calls to such methods, covering in this way all the typical im-
pacts that the «Distributed» stereotype has on Interface model elements at
this RMI implementation level of abstraction, i.e., the impact on the definition of
the Interface itself, on the definition of its contents, and on its usage by other
model elements.

public aspect PrlxDistributionRmiSunJavaAspect {

  pointcut allInterfaces(
             PrlxJavaCodeGenerator jgen,
             PrlxInterface prlxi): 
    call(String
      PrlxJavaCodeGenerator.getInterfaceCode(PrlxInterface))
    && target(jgen)
    && args(prlxi);

  after(PrlxJavaCodeGenerator jgen,
        PrlxInterface prlxi): allInterfaces(jgen, prlxi) {
    if (prlxi.isDistributed()) {
      jgen.addExtends(prlxi, "java.rmi.Remote");
    }
  }

}

Fig. 9. Code snippet of the PrlxDistributionRmiSunJavaAspect



258 Raul Silaghi and Alfred Strohmeier

Moreover, the semantics for the «Servant» stereotype is addressed by the
PrlxDistributionRmiSunJavaAspect as well, but we do not enter into more
details besides mentioning that it concerns mainly the code that has to be generated
for the interactions with the «RMIRegistry».

Since all PrlxConcernPlatformAspectPlugins for a given programming
language act on the same code generator, it seems that we might have a problem
with all the weaved functionality. One obvious question is: if we load the Prlx-

DistributionRmiSunJavaAspectPlugin and the PrlxTransactionsCorba-
OpenorbJavaAspectPlugin, and both associated aspects get weaved in the same
code generator, how will the code generator know to display only the distribution-
related code in a view and the transactional code in another view, depending on what
the developer wants to see at a given moment? Or, how will the code generator know
to display the code for the PrlxDistributionCorbaOpenorbJavaAspectPlug-
in and for the PrlxTransactionsCorbaOpenorbJavaAspectPlugin inside the
same view?

In order to answer these questions, we consider the 4-DD of a plug-in as an
identifier (ID) that uniquely identifies a plug-in inside the set of all loaded plug-ins.
Furthermore, we notice that two plug-ins can be displayed in the same view if and
only if they differ only in the middleware-concern-dependency dimension. If this is
the case, then we say that the two IDs are compatible.

Based on this identifier and using the AspectJ Pointcut Method Idiom as de-
fined in [194], we managed to answer the previously raised questions. The Pointcut
Method Idiom is typically used when the execution of certain advice depends on
runtime-specific elements that cannot be expressed by the underlying pointcut lan-
guage. In this case, a pointcutMethod() is defined and it will be called in order to
determine whether the advice should be executed or not. An important issue is how
the computation of the pointcutMethod() depends on the execution context of the
application. Usually, context information is directly passed by the piece of advice to
the pointcutMethod(). This implies that either the referring pointcut passes some
parameters to the advice or the advice extracts context information using the intro-
spection capabilities of AspectJ, i.e., thisJoinPoint or thisStaticJoinPoint.
Another possibility is that the aspect itself has a state, which is set by the applica-
tion’s execution context. Moreover, just like the case of design patterns [140], several
AspectJ idioms can be combined in order to increase the modularity and extensibil-
ity of designs with respect to the ever-changing requirements, and thus to increase
their reusability. In the case of Parallax, the Pointcut Method Idiom was integrated
with other idioms, such as Abstract Pointcut, Template Advice, Chained Advice, all
defined in [194].

Figure 10 depicts in a graphical way the proposed solution in which the ID is
shared by the constituent parts of a plug-in, i.e., the Eclipse part that plugs in the
new GUI elements that will trigger the special functionality offered by the plug-in
(like the new entry in the Platforms view), and the encapsulated aspect that weaves
the new functionality in the code generator. When the developer selects options in
the provided views, the ID of the currently selected view is known, and thus the code
generator will also know what branches to take.



Parallax 259

Parallax

PrlxDistributionRmiSunJavaAspectPlugin

getInterfaceCode(IPrlxInterface)
{
    if (ID1) then RMI;

    if (ID2) then CORBA;
}

«aspect»
AbstractAspect

boolean pointcutMethod() {...}

pointcut candidate() : ...

before() : candidate() {
    if (pointcutMethod()) {...}
}

Pure
Eclipse Plug-in

ID1

Aspect-Plugin

«uses»

«uses»

ID1

Platforms

Fig. 10. The Pointcut Method Idiom and ID solution

3.3 Discussion

Even though all aspect-plug-ins (PrlxConcernAspectPlugin, PrlxConcern-
TechnologyAspectPlugin, and PrlxConcernPlatformAspectPlugin) are ad-
dressing the same middleware-specific concern, namely distribution, they address
the concern at three different levels of abstraction (platform-independent, platform-
specific, and implementation), and therefore they might impact different Parallax
modules, as was the case in our example (PrlxModel and PrlxJavaCodeGene-

rator). Nevertheless, there is a clear dependency between them as we have seen in
the distribution example. The former ones, which are weaved first, enable the core to
store concern-related information and define interfaces through which this informa-
tion can be queried afterwards. The latter one, which is weaved in a code generator
plug-in, will read the concern-related information from the core through the enabled
interfaces and it will generate middleware-specific code accordingly.

To conclude, we can group the plug-ins presented in Fig. 7 into two groups: the
first one, which is shaded in light gray, groups plug-ins that offer developers the pos-
sibility to configure their designs to address middleware-specific concerns at different
MDA levels of abstraction by incorporating concern-related elements into the model
and filling them with relevant information; the second one, which is shaded in dark
gray, groups plug-ins that offer developers the possibility to adapt their enhanced de-
signs to different programming languages and different middleware infrastructures,
and to view how middleware-specific concerns are actually implemented at the code
level. Both the configuration and adaptation features are provided through a well-
designed framework of plug-ins, each such plug-in promoting aspects that address
specific concerns that may crosscut plug-in boundaries.

4 The Parallax Tool Support

In this section we provide a brief description of the GUI of Parallax, explaining its
different views and their purposes, and presenting some typical usage scenarios.
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Since Parallax is implemented as an Eclipse plug-in, it follows the Eclipse look-
and-feel in terms of perspectives, views, menus, windows, editors, positioning, drag-
and-drop facilities, and so on. Figure 11 shows a screenshot of Parallax in a given
configuration, i.e., with a certain number of plug-ins installed. Even though the dif-
ferent views shown in Fig. 11 had to be shrunk and moved around in order to best fit
the width of the imposed layout, we hope they are illustrative enough for presenting
their intended purpose inside Parallax.

Fig. 11. Parallax

The Model Explorer view ( 1©) is responsible for presenting the UML model
loaded from an XMI file in a form that is easily accessible to the developer. In this
view, we only present a selection of all the model elements that exist in the XMI, such
as packages, classes, interfaces, methods, attributes, stereotypes, object instances,
and so on. The selection is made from the point of view of their involvement in the
code generation process and in the way middleware-specific concerns are addressed
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at both the model and implementation levels. Moreover, the level of detail for each
element is restrained as well. By double-clicking on an element in the Model Ex-
plorer, the property sheet of that element is displayed containing the exhaustive list
of properties that were set for that element.

The Filters view ( 2©) allows developers to define new filters and to enable/disable
them according to their needs at different stages in the development process. Filters
are set in order to eliminate certain model elements from the current presentation
of the model. As an example, a filter including the UML:Operation model element
will “logically” remove all currently existing operations from the model. Note that
the operation of enabling filters is not necessarily commutative, i.e., enabling filter
A before filter B might not result in the same subset of model elements as enabling
filter B first. A filter is enabled through its associated check-box.

The Views list view ( 3©) displays the list of all possible design-specific views that
the developer can open. Even though the list can be extended to support new design-
specific views, the currently supported ones are: the XMI view, the XMI-Tree view,
the Code view, the Inheritance view, the Dependency view, and the Components
view. Since most of these views have appropriate names that suggest their intended
purpose, we will not explain them in more detail here. However, the meaning of the
XMI-Tree view might not be very clear and might require an extra explanation. This
view represents a one-to-one mapping of the loaded XMI file onto a TreeViewer (a
Standard Widget Toolkit component) and allows the developer to browse the entire
XMI structure in a more friendly way than the text-based version provided in the
XMI view. In the XMI-Tree view, for instance, developer’s are able to collapse XMI
elements at different imbrication levels and focus only on the elements they require.
Even though not yet implemented, and therefore not on the screenshot, the Code view
will be an Eclipse tabbed view with several tabs corresponding to the different pro-
gramming languages that are supported through the PrlxCodeGeneratorPlugins
that have been loaded. These features are currently presented as stand-alone views to
the developer (e.g., Java and C++, as shown in 4©).

The Concerns view ( 5©) presents the list of middleware-specific concerns that
Parallax has been enabled to deal with (at the PIM level) through the different
PrlxConcernAspectPlugins that have been loaded. Even though it is difficult
to see in Fig. 11, each middleware-specific concern is associated with a different
color, which is hardcoded for the moment but will become customizable in the near
future. When selecting such a middleware-specific concern in the Concerns view
(through its associated check-box), all concern-specific information in all currently
opened views is highlighted with the color associated with the selected concern ( 6©).
When selecting several such concerns, color overlapping may occur in some views,
in which case we use a predefined color (gray) to highlight the overlapping parts. A
message is also displayed to inform the developer that overlapping has occurred.

The Technologies view ( 7©) groups together the different middleware technolo-
gies that Parallax has been enabled to provide configuration for through the differ-
ent PrlxConcernTechnologyAspectPlugins that have been loaded. Each such
plug-in provides Parallax with a configuration tab that enables developers to config-
ure a middleware-specific concern with concrete realization details on a specific mid-
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dleware technology (i.e., at the PSM level). For example, if distribution is the
middleware-specific concern, and RMI is the specific middleware technology, then
the PrlxDistributionRmiAspectPlugin is responsible for providing Parallax
with a configuration tab that would allow developers to configure distribution-
specific realization elements on the RMI technology, such as the host and port of
the «RMIRegistry» to be used (as defined in Fig. 1 3©). With respect to the Par-
allax GUI organization, all concern-configuration tabs specific to a technology are
enclosed in one technology-configuration window.

The Platforms view ( 8©) shows the implementation support that has been loaded
into Parallax in order to address middleware-specific concerns at the implementation
level. Each entry in this view corresponds to a PrlxConcernPlatformAspect-

Plugin that was designed and implemented to address a specific middleware con-
cern, with a specific middleware technology, on a specific middleware platform, and
using a specific programming language, e.g., a plug-in for distribution, with CORBA,
on Borland VisiBroker, using Java. Each such plug-in may be enabled through its
corresponding check-box. Once enabled, a new view is opened and the enhanced
generated code is displayed ( 9©). We decided to open a new view for each platform
plug-in in order for developers to be able to compare and see the changes that mid-
dleware, in general, and middleware-specific concerns, in particular, induce at the
implementation code level. However, thanks to the ID feature that was introduced
in Sect. 3.2.2, two enabled plug-ins that have compatible IDs, i.e., that differ only
in the concern they are addressing, will display the implementation code for the two
concerns in the same view.

One should notice that the entries in the Views and Platforms views ( 3© and 8©)
are opening new Parallax views but are displaying information or code in pure text,
without any special highlighting besides syntax coloring. It is through the Model
Explorer and Concerns views ( 1© and 5©) that highlighting facilities are provided
in order to emphasize model-related or concern-related information in all opened
views. Moreover, opening new views automatically takes into account all the cur-
rently enabled highlighting settings.

While the Concerns and Technologies views show developers to which extent
they will be able to configure or reconfigure their designs by addressing some of the
middleware-specific concerns shown in these views, the Platforms view shows devel-
opers to which extent they will be able to adapt their systems to different middleware
infrastructures. The contents of the three views, along with the enabled function-
alities, depend on the PrlxConcernAspectPlugins, PrlxConcernTechnolo-
gyAspectPlugins, and PrlxConcernPlatformAspectPlugins that have been
loaded into Parallax.

A typical usage scenario starts by deciding what plug-ins to load according to
what middleware-specific concerns the developer would like to address, and depend-
ing on the middleware infrastructures the developer would like to generate code
for. After that, the developer can start Eclipse, open the Parallax perspective, load
an application design from a previously exported XMI file, and start browsing the
model and navigate between the different views provided by Parallax. Provided that
the appropriate plug-ins have been loaded and properly installed, the developer can
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start applying the enclosing UML-MS profiles in order to incrementally refine the
centralized design along several middleware-specific concern-dimensions, such as
distribution, concurrency, transactions, etc., the available concerns being shown in
Fig. 11 5©. Contextual popup menu options are enabled, configuration windows are
made available, wizards guide and survey the profile application process, providing
the developer with messages that point out the missing elements that still have to
be set in order to obtain a consistent model with respect to the profile that is being
applied. For instance, having in mind the semantics defined by the UML-D profiles
for addressing the distribution concern both at the PIM and PSM levels of abstrac-
tion (Fig. 1 1© and 3©), the developer is able to configure what «Distributed»
interfaces are to be made available in a distributed setting, what is the location of the
«Publisher» (e.g., the host and port of a «RMIRegistry») to be used, what are
the «Servant» objects to be registered with such a «Publisher», and so on. Fur-
thermore, in terms of assistance, when applying the UML-D profiles at the PIM level
of abstraction (Fig. 1 1©) for example, a wizard shows the message “The object obj

has been stereotyped as «Servant». Please provide its associated «Distributed»

interface”, and the list of possible interfaces is presented to the developer as a result
of an inference algorithm. Once the model has been filled with middleware-specific
information, the developer can start selecting the different options in the Platforms
view in order to see how the configured concerns are actually implemented at the
code level. At this point, the highlighting facilities might be useful in order to see all
concern-related information across different views.

Other facilities that are provided but do not appear in the views presented above
include: loading and saving a model, searching the model for specific model ele-
ments, saving a specific view of generated code, saving all views containing gener-
ated code, saving all the code that can be generated from the loaded model based on
the plug-ins that have been loaded, etc. Moreover, navigation and highlighting facil-
ities between the different views are also provided, e.g., selecting a model element
in the Model Explorer automatically highlights that element in all the views that are
currently opened. Messages for the developer are displayed in the Log view ( 10©).

5 Related Work

Since the MDA approach addresses the development of software at different levels
of abstraction, relying on several concepts and techniques to describe and to move
between such levels but without imposing any specific modeling language to be used
at these levels, the variety of MDA-compliant tools is very broad. It includes model
repository tools, domain-specific tools that consider different modeling languages for
their specific purposes (either UML or other MOF-based metamodels), tools that pro-
mote model transformation languages and provide support for defining and applying
model transformations, tools that provide code generation facilities targeting specific
platforms, where a platform may be either a programming or scripting language, a
middleware platform, a database, an operating system, or anything else that may be
seen as a platform in the context of an application, and so on. A non-exhaustive list
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of the companies committed to support the MDA vision and their products is kept by
the OMG at [323].

As clearly stated in the introduction of this paper, we consider the middleware to
be our MDA platform, and providing support for generating code targeted at different
middleware infrastructures is the main goal of Parallax. As a consequence, we will
only refer to some of the mature commercial products in this specific MDA-market
niche, namely ArcStyler, OptimalJ, and Codagen. Even though it is always difficult
to compare tools resulting from academic research with true commercial products,
we will point out nevertheless some key concepts that each of these commercial
products relies upon and then we will show how Parallax is different.

Mainly focused on increasing the development productivity of Web,
EJB/J2EE, and .NET applications, ArcStyler [218] promotes model transforma-
tions (model-to-model and model-to-code) as MDA-Cartridges based on its MDA-
CARtridge ArchiTecture (CARAT). In addition to containing transformation rules, a
Cartridge can provide verification rules, which check the input model for correctness
with regard to the transformation implemented by the Cartridge. ArcStyler distin-
guishes between MDA-Cartridges that enable the model-driven development of soft-
ware applications for standard architectures (Java2, C#, EJB1.1, and EJB1.2), and
those supporting the MDA-compliant development of four-tier applications (J2EE,
.NET, and ASP.NET). Moreover, the latter category includes MDA-Cartridges for
standard J2EE application servers, such as BEA WebLogic, Borland Enterprise
Server, IBM WebSphere, and JBoss. ArcStyler also provides an MDA-Cartridge IDE
with its Architect edition, giving developers the possibility to define their own MDA-
Cartridges or to extend existing ones.

The core of OptimalJ [67] contains models and patterns, allowing developers to
refine models by sequentially applying a series of customizable patterns. The Op-
timalJ models are defined at different levels, including the Domain Model, the Ap-
plication Model, and the Code Model (Java code). Moving between these models
is achieved by applying technology and implementation patterns, also referred to as
transformation patterns. Another type of patterns, referred to as functional patterns
(including domain, application, and code patterns), are more like code templates,
providing developers with reusable predefined functionalities that speed up develop-
ment and reduce errors. A Pattern Editor is provided with the OptimalJ Architecture
Edition, allowing developers to define their own patterns or to change the behavior of
the existing ones. OptimalJ focuses exclusively on the development of J2EE applica-
tions, providing deployment facilities to several J2EE Application Servers, such as
IBM WebSphere, BEA WebLogic, Sun ONE (formerly iPlanet), Oracle 9iAS, Ob-
jectWeb JOnAS, and JBoss.

Codagen Architect [66] promotes a model–extend–transform development pro-
cess, relying on several pre-built transformation templates and UML profiles that
are known as Technology Accelerators. After modeling the application that needs
to be implemented, developers may extend their UML models using transformation
markers, which encapsulate design decisions associated with the platform that has
been chosen, be it J2EE or .NET. Integration schemas describe how common ser-
vices provided by the selected infrastructure are reused by business objects from
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the previously defined models. Transforming business models into source code is
achieved using Technology Accelerator templates, which define the model-to-code
transformation in terms of XML tokens that control the logic of code generation. A
dedicated XML-based environment is provided for editing templates. Codagen Ar-
chitect provides Technology Accelerator templates for ADO.NET and ASP.NET, on
the .NET platform side, and EJB, JSP, and Struts, on the J2EE platform side.

If we were to base our comparison on the number of provided functionalities
(wizards, IDEs, editors, code generators, etc.), or on the robustness of the product
when it comes to providing support for developing enterprise-level applications, Par-
allax would not stand a chance of winning against these colossal products that rely
on decades of experience in the ever-demanding software industry. However, Par-
allax manages to distinguish itself as a pioneer in this specific MDA-market niche,
proposing a new approach to code generation for different middleware infrastruc-
tures by relying on:

• separation of concerns for refining designs along one middleware-specific con-
cern-dimension at a time,

• UML-MS profiles for addressing middleware-specific concerns at different MDA
levels of abstraction,

• aspect-oriented programming for encapsulating such middleware-specific con-
cerns into AspectJ aspects that enable the Parallax framework to address them at
different MDA levels of abstraction,

• Eclipse plug-ins for promoting such aspects in an open source fashion and in
this way making unlimited the number of middleware-specific concerns that
can be addressed using Parallax (through PrlxConcernAspectPlugins and
PrlxConcernTechnologyAspectPlugins) and the number of middleware
infrastructures that may be used as target implementation platforms for the previ-
ously addressed concerns (through PrlxConcernPlatformAspectPlugins).

6 Conclusions and Future Work

In times of constant and rapid change, with new requirements to satisfy and new tech-
nologies to adapt to, tool support is crucial. Built on top of the MDA-oriented UML
profiles defined for addressing middleware-specific concerns in the context of the
Enterprise Fondue method, the Parallax framework presented in this chapter allows
developers to look at the system under consideration from different perspectives (or
viewpoints) through a well-defined system of plug-ins and based on aspect-oriented
support. In addition to presenting the Parallax framework, we focused on the support
provided for (re)configuring application designs with middleware-specific concerns,
on the one hand, and adapting them to different middleware infrastructures, on the
other hand. Parallax enables developers to incorporate middleware-specific concerns
in their designs at different MDA levels of abstraction, and to view their enhanced
designs through a prism of middleware platforms and see how middleware-specific
concerns are actually implemented at the code level. Implementation details were
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discussed as well, emphasizing the powerful combination of AspectJ aspects with
Eclipse plug-ins, which enables aspects to encapsulate concerns that crosscut plug-
in boundaries.

Besides the tremendous support that the Eclipse platform offered and contin-
ues to offer in order to design, build, and improve the Parallax framework, Paral-
lax takes a rather specific direction, in both the MDA and Eclipse worlds, targeting
middleware-specific cross-cutting concerns, on one hand, and middleware infrastruc-
tures (technologies and platforms) on the other hand, while still relying on aspect-
oriented support for modularizing concerns that tend to crosscut plug-in boundaries.

Note, however, that both the Enterprise Fondue method and the Parallax tool
support are relatively young, and still undergoing refinement and improvement as
we move along. Nevertheless, they are both applied to case studies and tests are car-
ried out to determine their limitations and extensibility problems, and to adjust them
accordingly. Once the extension points that we have been experimenting with be-
come stable, we intend to follow the Eclipse contribution circle and publish them,
so that other developers and middleware vendors may contribute and enrich Par-
allax by implementing and providing the community with new Parallax plug-ins
(PrlxPlugins) addressing middleware-specific concerns for their favorite middle-
ware infrastructures, or simply the code generation for their favorite programming
language.

With respect to the Code view, based on the information that can be stored in
PrlxModels (according to the current PrlxMetamodel), PrlxCodeGenerator-
Plugins should be able to generate application code corresponding to the static
structure (from class diagrams) and – to some extent – to the behavior (from inter-
actions in collaboration/sequence diagrams). While we have already implemented
support for the Java and C++ programming languages (through a PrlxJavaPlugin
and a PrlxCppPlugin), we are currently investing efforts for supporting the C# pro-
gramming language as soon as possible (through a PrlxCsharpPlugin). Looking
forward, UML 2.0 [116] defines new modeling elements that can appear in sequence
diagrams for describing enhanced interactions, such as seq, alt, opt, break, loop,
etc., defined in Fragments::InteractionOperators. As soon as UML model-
ing tools provide XMI export facilities for these enhanced interactions, we will ex-
tend the PrlxMetamodel in order to incorporate them as well. As a consequence,
PrlxCodeGeneratorPlugins will be able to take advantage of these new interac-
tion elements and generate enhanced code in the programming language they pro-
mote.

In the current state, aspects are only used to enhance the core of Parallax in order
to be able to store and query concern-specific information, and to enhance the code
generators with middleware-specific code generation capabilities. As the language
imposed by Eclipse plug-ins is Java, all aspects are written in AspectJ, and thus we
use a Java aspect-plug-in to enhance, for instance, the C++ code generator (which
itself is written in Java as well) with CORBA code generation capabilities. However,
the final code that is generated no longer supports the separation of concerns. All
concerns have their code tangled as it was generated by the enhanced code genera-
tor. The developer needs Parallax’s highlighting support in order to see clearly what
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concerns are addressed where. In order to overcome this problem, we are very much
interested in the possibility of generating aspects as separate units, outside of the
code itself, and to encapsulate in these generated aspects the middleware-specific
cross-cutting concerns that we are addressing. For example, we would generate the
C++ code that addresses the pure functionality of the system to be implemented, and
in addition, we would generate separate aspects for each middleware-specific con-
cern that the final system has to incorporate. Moreover, note that such aspects would
have to be generated for aspect-oriented extensions of the targeted programming lan-
guage, i.e., for an aspect-oriented extension to C++ [4] in the case of the previous
example. Assistance could be further provided in order to weave the aspects into the
pure functional code. With this approach, the developer would get several separate
building blocks (code and aspects) that implement the final system in a pure concern-
oriented fashion. In a first step, this approach will be tested for generating AspectJ
aspects, i.e., aspects for the Java programming language, since we do not have any
experience with aspect-oriented extensions to other programming languages.
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Summary. The aim of MDA and its related concepts is to increase the quality and speed
of system development by raising the level of abstraction, using modeling techniques, model
transformation, and code generation. However, in order to take advantage in a professional
development environment, some obstacles need to be overcome.

This chapter considers the complete life cycle of MDA applications which starts with the
set-up of a development environment. We put a special emphasis on the long-term perspective
of applications developed using the MDA, including maintenance and enhancements of the
application itself, as well as of the model transformation languages, templates, and tools.

1 Software Evolution

Long-lived software systems have to be changed and adapted because they are sub-
ject to multiple innovation cycles. Several technologies, among them the OMG’s
Model-Driven Architecture (MDA) [309], claim to improve the evolvability of soft-
ware systems. We are interested in the evolution of software systems developed using
the MDA approach in the long run, when not only the requirements for the system,
but also the infrastructure and development tools, change. Therefore we consider the
different innovation cycles and the respective maintenance activities.

1.1 Innovation Cycles

Changes to software systems are driven by one out of the following four motivations.
Figure 1 shows software as the link between the user requirements and the technical
implementation. This simplistic view allows us to deduce four types of maintenance
activities: perfective, adaptive, corrective, and preventive maintenance.

The terms “perfective” and “adaptive” are used with slightly different meanings
by different authors. We briefly explain our view on different types of maintenance.

Requirements for software systems change over time. Reasons are manifold; con-
sider for example information systems. Business processes change, new increments
of the software support a wider scope of business processes, or new laws require a



270 Tilman Seifert and Gerd Beneken

Requirements

Technical Infrastructure

Softwarecorrective

perfective

preventive

adaptive

Time

Fig. 1. Innovation cycles and maintenance types

different set of information to be available. Since the implementation of more re-
quirements improves the functionality of a system, this type of maintenance is called
perfective maintenance.

Technology changes as well. The system has to be adapted to a changed technical
environment; therefore the related activities are referred to as adaptive maintenance.
The term “technology” includes the run-time environment, any third-party compo-
nents, interfaces to neighboring systems, as well as the tools used in the development
process. The last must not be omitted when reasoning about the maintainability of a
system, as we will see in this chapter.

Adaptive maintenance exposes two interesting properties. Even though a soft-
ware system itself might not need an update of its technical infrastructure, often the
adaption is inevitable due to external constraints. At the same time, it does not in-
crease the functionality of a system.

Errors are detected and have to be fixed. Corrective maintenance includes all re-
lated activities. Corrective maintenance is important, but according to Pigoski [350]
it accounts for about 20% of all maintenance tasks and is out of the scope of this
chapter.

Preventive maintenance are actions taken to avoid difficulties in either one of
the above-mentioned maintenance types at some time in the future. These actions
are driven by expectations about changes in the future. Preventive maintenance is
often not explicitly considered in the literature as well as in practice; however, it is
indispensable for a pro-active technology management.

1.2 Dependency Chains

Changes on the level of the technical infrastructure are typically triggered by ex-
ternal events such as upgrades or changes in the run-time environment (e.g., the
operating system, the application server, the GUI framework, etc.), or changes in the
development tool chain. Due to service level contracts, diminishing support for older
versions, or new components that need the newer version, the user of a technology
often has little choice but to follow the upgrades.
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Therefore it is an important maintenance activity to precisely analyze and keep
track of dependency chains of each system. This analysis includes the components
of the system itself, all components in the run-time environment, any third-party
components like libraries or other systems, as well as compilers and the whole de-
velopment tool chain.

Run-time Environment

Complex software systems consist of many different components, and are usable
only in a specific configuration. A software system usually depends not only on a
number of services (as provided by an application server or a database) and tools,
but also on specific versions of these software components. This includes middle-
ware, technical services, third-party tools like databases, application servers, and
neighboring systems. These components or systems change for the very same rea-
sons. If the interface of a third-party component or a neighboring system is changed,
the system in question might also have to be changed. Often enough the decisions
about upgrades of any one of these components are largely beyond the control of the
project team [462]. In those cases the project team is put into a reactive role and has
to respond to the change in the environment.

Third-Party Components

Any software system depends on libraries and other third-party components which
might be used by static or dynamic linking, or by dynamic run-time lookup. Changes
in those third-party components imply changes in the software system.

Consider for example the popular logging library log4j for Java development (see
[280]). When changing from version 1.1.3 to version 1.2, the Category.assert
method has been replaced by Category.assertLog. This change was necessary
because assert is a language reserved word in JDK 1.4. Log4J 1.1.3 does not
compile under JDK 1.4, and client code using log4J 1.1.3 has to be adapted in order
to work with version 1.2.

This example seems trivial, since the change can be done automatically, using ei-
ther the refactoring abilities of modern IDEs, or a relatively simple script. As soon as
not only the method name but also the parameter types change, the changes quickly
become more complicated. But the major concern is that there are many changes that
occur without leaving a choice about whether to follow the upgrade or not.

Development Tool Chain

Development tools like IDEs and compilers, modeling tools, and support tools like
configuration management, bug tracking, and documentation tools, and even the text
processor, are subject to their respective innovation cycles. Upgrades of the tools
might allow changes in the system (because a powerful new feature is offered), or
even force certain changes to the system (e.g., because an old feature is no longer
supported). Section 3 discusses the evolution of the development tool chain in detail.
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1.3 Maintainability

There are several definitions for the maintainability of a software system (see Pigoski
[350, ch. 16]), but they all remain rather vague. Maintainability is defined to be the
ease with which software can be maintained, enhanced, adapted, or corrected. It
includes the ability to operate the system over a long period of time.

There is a common understanding that maintainability can be “high” or “low”,
but so far there are no objectively measurable properties of software or its envi-
ronment that clearly define its (degree of) maintainability. According to Martin and
McClure, a system has to be understandable, modifiable, testable, reliable, efficient,
usable, portable in order to be maintainable [284]. These attributes seem to be sen-
sible; they are more or less compatible with ISO 9126 [219], which postulates that
a system is maintainable when it is analyzable, changeable, testable, and stable.
Throughout this chapter, we will use the properties given by Martin and McClure
to analyze the maintainability of a software system. The scope of our analysis will
include all four types of maintenance tasks.

However, these attributes only consider the source (i.e., the code and the models,
if they are used for generation) of the software system itself. From the perspective
of maintenance, the system has to be viewed with its context, i.e., its complete en-
vironment, as explained above. Therefore, we will also analyze the evolution of the
environment and the dependencies, as discussed in Sect. 1.2.

2 MDA Development Environment

2.1 “Funcar” Application Case Study

Are systems that are built using the MDA approach easier to maintain than systems
built using traditional approaches? The OMG claims so: The MDA provides an open
vendor neutral approach to the challenge of business and technology change [324].

We conducted a case study to learn more about the influences of the current
MDA approach on the maintainability of systems. Using the MDA approach we
developed a simple application example for the Java J2EE platform. The application
is a reservation system with a web interface for a car sharing service called Funcar.

2.2 Run-time Environment

We use the Java 1.4.2 Virtual Machine. On top of that the JBoss J2EE application
server constitutes the run-time environment. The final version of the reservation sys-
tem is implemented using the Enterprise JavaBeans (EJB) specification 2.1 [410].
Some code examples are presented below. To analyze a change of the run-time envi-
ronment in the case study, the EJB 1.1 run-time environment is replaced by the EJB
2.1 environment.
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2.3 Development Tool Chain

The tool chain is typical of a Java project, and consists of easily available tools,
most of which are open source, except for MagicDraw (Fig. 2). The UML models
are developed with MagicDraw and saved in the XMI 1.1 standard file format. Other
modeling tools such as Poseidon, Together, or Rational XDE could also be used, be-
cause they provide a similar storage format. The MDA tool AndroMDA [18] reads
the UML models and generates Java code. The code generation templates are im-
plemented using the scripting language Velocity [442]. We completed the generated
code by adding business logic with the Eclipse IDE.

Modeling Tool
(Magic Draw)

MDA Tool
(AndroMDA)

Infrastructure
(JBoss)

Platform
Independent

Model
(UML 1.4 / XMI 1.1)

Reference
Architecture
(UML Profile)
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Fig. 2. Overview of the tool chain

2.4 Reference Architectures

Plain UML models do not contain enough information about the meaning of mod-
eling elements. For example, a plain UML class might just be interpreted as a plain
programming language class. Several modeling tools provide such a direct mapping
between models, which are primarily class diagrams, and code. Therefore plain UML
models and the code are at the same level of abstraction. To raise this level, a more
expressive vocabulary for PIM and PSM models is needed.

The MDA itself does not specify the content of PIM and PSM models. Neither
diagram types nor model elements are defined. For some domains the OMG provides
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specific UML profiles that specify parts of the PIM and PSM [334]. Some further
examples of problem-specific languages are presented in this book.

Tool vendors often define their own stereotypes. For example, AndroMDA uses
stereotypes such as Service and Entity, which are quite similar to the with-
drawn EJB profile in the Java community process [232]. Other tool vendors use J2EE
patterns [15] to identify stereotypes and profiles. For example, the UML J2EE profile
contains a stereotype called Business Facade, according to the pattern with the same
name.

If a proprietary UML profile is applied, the architecture behind it is used, too.
Hence, by using the UML profile, the implicit or explicit reference architecture of
the tool vendor or of an OMG specification is used. A high proportion of the model
depends on a tool vendor’s or the OMG’s understanding of software architecture.

To avoid this dependency we applied an established and practically proven J2EE
reference architecture that has been used in several projects by iteratec GmbH.1 The
reference architecture provides a skeleton for J2EE applications and defines layers,
the most important components, and their interfaces.

Several design documents, user manuals, and some existing applications de-
scribe the reference architecture. We used this information to identify a set of
architecture-related UML stereotypes. Figure 3 shows a model of funcar’s mem-
ber component with the stereotypes: Core Entity, Business Activity, and
Business Type.

The reference architecture provides application examples. We used this carefully
tested and proven code to develop code generation templates for every stereotype.
This way, PIM using the stereotypes can be converted to executable Java code.

The custom UML profile has several additional benefits: the UML profile can be
adapted to iteratec’s needs, developers do not have to learn a new design vocabulary,
and existing knowledge and experience can be used.

<<Business Type>>

Member

<<Business Activity 
Interface>>

IMemberManagement

<<Business 
Activity>>

Member
Management

<<Core Entity>>

Member
memberId: int
name: String

<<Core Entity>>

Company

0..n

Fig. 3. Member component of the car sharing system in UML

1 Iteratec is a medium-sized software and consulting company located in Munich.
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2.5 Business Modeling with UML

As in most MDA approaches, just the static structure of the reservation system is
modeled using UML 1.4 class diagrams, which are extended by stereotypes. The
diagrams consist of core entities, business activities, business interfaces, and business
types (components). Business logic such as computations or checking of correctness
rules are hard to express using UML, because either modeling is too complex or
applicable modeling elements are missing in tools.

2.6 Model Interchange with XMI

The XMI file format is an OMG standard to exchange UML models between differ-
ent tools. Listing 1 shows the simplified XMI 1.1 description of the Core Entity
Member. The description of Member is similar to a simple UML class; it is qualified
by a stereotype Core Entity. The stereotype is defined according to the iteratec
reference architecture.

Listing 1. XMI description of member

<UML:Class xmi.id=’MEMBER’ >
<UML:ModelElement.name >Member</UML:ModelElement.name>
<UML:ModelElement.visibility xmi.value=’public’ />
...
<UML:ModelElement.stereotype >

<UML:Stereotype xmi.idref=’CORE_ENTITY’ />
</UML:ModelElement.stereotype>
<UML:Classifier.feature >
<UML:Attribute xmi.id=’IGNORE_1’ >
<UML:ModelElement.name >
memberId

</UML:ModelElement.name>
<UML:ModelElement.visibility xmi.value=’private’ />
...

</UML:Attribute>
<UML:Attribute xmi.id=’IGNORE_2’ >
<UML:ModelElement.name >
name

</UML:ModelElement.name>
<UML:ModelElement.visibility xmi.value=’private’ />
...

</UML:Attribute>
</UML:Classifier.feature>

</UML:Class>

Note that XMI 1.x just contains tags for plain UML elements, omitting informa-
tion on diagrams and graphical positions of model elements. Diagrams are stored in
a tool-specific manner, e.g., using specialized XML tags.
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MagicDraw stores graphical information, such as the coordinates of a model el-
ement in a diagram, using MagicDraw tags in the XMI file (Listing 2). Hence, the
diagram interchange works well for plain UML information but problems occur with
the graphical presentation of diagrams. In the worst case each diagram has to be re-
drawn. The UML 2.0 standard solves this problem and provides a notion of diagrams
and their graphical elements, with position, size, and rendering order [332].

Listing 2. Coordinates in tool-specific format

<mdElement elementClass=’ClassView’ xmi.id=’IGNORE’ >
<elementID xmi.idref=’MEMBER’ />
<geometry >10, 110, 308, 76</geometry>

</mdElement>

2.7 Code Generation with Velocity

Proven and carefully tested code is required to develop code generation templates.
Class names, attribute names, data type names, and other information in the code
are replaced by variables and control structures in a scripting language. During code
generation the variables are replaced by the corresponding values that are defined in
the UML model.

In AndroMDA at least one code generation template is defined for every stereo-
type in the model. During code generation AndroMDA identifies the required tem-
plate by the stereotype. Listing 3 shows Velocity code that generates abstract get
and setmethods, which are mandatory for Entity Beans in the Enterprise JavaBeans
2.1 specification [410].

AndroMDA provides several templates for Enterprise JavaBeans in a cartridge.
We modified or exchanged these templates according to the reference architecture.

Listing 3. Velocity template for EntityBean class

// ...
public abstract class ${class.name}Bean

implements javax.ejb.EntityBean
{
// ...
#foreach ( $att in $class.attributes )
#set ($atttypename = "#javaMapping($att)")
// ...
public abstract $atttypename

get${str.upperCaseFirstLetter(${att.name})}();
// ...
public abstract void

set${str.upperCaseFirstLetter(${att.name})}
(${atttypename} newValue);

#end
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// ...
public abstract void validate();
// ...

}

The template contains a loop (#foreach). For each attribute of the Core Entity,
get and set methods are generated. Plain text of the template is directly copied to
the Java code file (e.g., public abstract class), whereas the variables are
replaced by the information contained in the model (e.g., ${class.name}).

We observed that the generation templates tend to increase their complexity over
time, the number of loops and control structures grows significantly. The understand-
ability of the template, which mixes the target language Java with the scripting lan-
guage Velocity, decreases continuously. Simple code can easily be described using
a template language, whereas particular situations have to be handled using the pro-
gramming language facilities of the template language.

2.8 Business Code in the Target Language Java

The generated code must not be edited. AndroMDA promotes the idea of inheriting a
business class from the generated code and adding modifications there. AndroMDA
generates a base class such as MemberBean, and also generates an inherited class,
such as MemberBeanImpl, that may contain extensions. If the model is modified
and the code needs to be updated, just the non-modified base classes are exchanged.
Round trip engineering is not supported. The output of the template shown above is
depicted in Listing 4.

Listing 4. Generated code for EntityBean class

public abstract class MemberBean
implements javax.ejb.EntityBean

{
// ...
public abstract int getMemberId(); // ...
public abstract void setMemberId(int newValue); // ...
public abstract java.lang.String getName(); // ...
public abstract void setName(java.lang.String

newValue); // ...
public abstract boolean validate();
// ...

}

For example, the validate() method has to be completed with business code
in the inherited class, because the complex business logic is easier to implement in
Java. Listing 5 shows a simple data verification rule that requires the memberId
to be between 10000 and 20000 for members who work for non-commercial orga-
nizations. Note that the listing is simplified. The business rule implementation uses
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the EJB 1.1 interface. An EJB 2.0 based implementation rather uses container man-
aged relationships instead of calling a findByPrimaryKey method to find the
member’s company. Such dependencies between platform-specific code and busi-
ness logic are hard to avoid.

Listing 5. Manual extensions in inherited class

public abstract class MemberBeanImpl
extends MemberBean
implements javax.ejb.EntityBean

{
//...
public boolean validate()
{
// Filter correct memberIds
// EJB 1.1 Code; no Container Managed Relationships
// and no Local Interfaces
CompanyHome companyHome = ...;
Company c = companyHome.findByPrimaryKey(

this.getCompanyId());
if (c.isNonCommercial() &&

(memberId >= 10000 && memberId < 20000))
return true;

else if (memberId >= 20000 && memberId <= 99999)
return true;

return false;
}
//...

}

Some MDA tools such as OptimalJ use protected areas in the generated code for
the handwritten business logic. For example, the validate()method is completed
directly in the generated code. The handwritten code is protected by special Java
comments. If the model is modified and new code generation is necessary, the tools
parse the existing files and reuse the business logic in the protected areas.

2.9 Model Transformation

In the case study no model transformation is applied. In principle the model trans-
formation is similar to code generation. The stereotypes in the PIM are interpreted
and transformed to other model elements in a PSM. For this purpose tools use model
generation templates or transformation patterns. Therefore the argumentation con-
cerning the maintainability of code generation also holds true for model transforma-
tion.

Most of the modeling tools available today have a proprietary model transfor-
mation approach. The model transformation descriptions are as maintainable as the
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code generation templates described above. A language as requested in [165] is still
in an OMG standardization process.

3 Maintainability of MDA Applications

In order to understand the maintainability of systems developed using the MDA,
Table 1 considers the properties introduced in Sect. 1.3 and compares them to the
“classical” way of developing the same system, using models only for understanding
and specifying (if used at all), but developing the code manually. For our analysis,
we consider systems in the context of their development and run-time environment;
we refer to the results from our case study in Sect. 2.

Table 1. Maintainability attributes of MDA systems, compared to “classical” software devel-
opment

Attribute MDA Systems

Understandability depends on skill
Modifiability depends on change request
Testability depends on tools
Reliability indifferent
Efficiency indifferent
Usability indifferent

Portability
depends on which component

to change

A system is understandable when it is relatively easy to overview the complete
system, to grasp its architecture (i.e., the structure of software elements and their
connections and dependencies [30]), and to read and understand the respective docu-
ments – be they specification, models, code, or documentation. Using models, model
transformation, and code generation instead of prose in the specification and manual
code development is not a guarantee for better readability. But using an appropriate
and powerful modeling technique, and then choosing the right models, allow zoom-
ing in and out of models, giving more abstract views or as much detail as possible.
Therefore, models offer chances for better readability. However, there are two draw-
backs. First, it depends on the skill of the developer to develop good models, and
on the skill of the maintainer to deal with existing models. Second, the logic of the
system is distributed in the models, in the templates, and in handwritten code. The
models represent the business aspects; the templates represent the reference archi-
tecture as well as the implementation details for the respective platform; and the
handwritten code contains the parts of the business logic that cannot be formulated
on the model level. This is a classic constellation for subtle development errors that
are hard to find.

The reliability, efficiency, and usability of a software system depend on many
factors. Among them are: thorough analysis of the environment and the requirements,
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thorough understanding of the implementation platform and its behavior, and a thor-
ough understanding of the system itself. The last is discussed above. The other two
are independent of the implementation method. The quality of the platform-specific
elements is improved by reusing these elements, which is a major goal of the MDA
approach. The advantages and disadvantages of software reuse are examined in the
software reuse discussion. Regarding these three quality properties, there is no intrin-
sic advantage of systems developed using MDA compared to “classic” development.

Testing systems developed on the basis of models is difficult. Every time a model
is changed, the code has to be regenerated. Regression tests should be available to test
every module automatically. Writing test cases in a conventional programming lan-
guage (e.g., the target language of the system) seems odd; instead, test cases should
be formulated on the same level of abstraction as the model that is to be tested. This is
not possible as long as the business logic is not even completely defined on the level
of the model. Note that this has dramatic consequences for the development cycle,
even before the maintenance phase has started. Especially in projects with short iter-
ations and quick release cycles – which the MDA obviously aims to support – easy
regression and unit testing is an essential requirement for the development method.

Debugging MDA systems is also a problem. Currently there is no debugger avail-
able that connects the steps being executed to the model at run-time – if there is any
logic formulated in the model at all. A developer therefore has to debug generated
code which is usually difficult. Another difficulty is that errors can be either in the
model, or in the template, or in the handwritten code. Maybe the tool situation will
change in the future, but today we have to state that testing and debugging MDA
systems is problematic.

The most obvious question for judging the maintainability is how easy it is to
modify a system. For MDA systems, this cannot be answered in general; it depends
on which part of the system needs to be modified. We will use examples to demon-
strate both easy and hard modifications for MDA systems in the following sections.

The portability of a system is the ease with which it is possible to use the existing
system on a new platform without (major) changes. MDA is designed for changing
the implementation platform by generating a different PSM. But MDA systems turn
out to be highly dependent on the development tool chain, as our examples will show
in the following sections.

3.1 Change in the Run-time Environment

Portability is relevant when a system is brought into a new run-time environment or
when the deployment platform is changed or upgraded. MDA claims that the run-
time platform can easily be replaced. A problem is that the OMG does not clearly
define the term “platform”. See [309, p. 5]:

“In the MDA, the term platform is used to refer to technological and engineering
details that are irrelevant to the fundamental functionality of a software component.”

A platform can be an operating system, a technology in general (like J2EE or
.NET), a specific version of any of these (e.g., JBoss version 4.0), or a target lan-
guage. In the stepwise refinement from a CIM over a PIM and one or more PSMs
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to finally generate code, some decisions restrict the set of possible target platforms.
E.g., models that use multiple inheritance do not allow Java as the target language
but only C++ realizations.

Restricting the focus of the term “platform independence”, however, allows us to
define which changes of the platform do not affect the business model. In our exam-
ple, the deployment platform was changed from EJB 1.1 to EJB 2.0. This implied a
number of changes. Public attributes in Entity Beans were replaced by abstract ac-
cess methods (see Listing 4) because the data access mechanism changed with the
new EJB version. While this is not a major change in terms of technological options,
in “classical” programming, it would still involve major changes in the source code:
in some cases, those changes might be done using refactoring tools or small scripts;
using MDA it is achieved by simply changing the code generation template.

A second novelty in EJB 2.0 is the concept of “local interfaces” which allows
access to Entity Beans more efficiently from within the EJB container. The third
major invention of EJB 2.0 is the container-managed relationship which extends the
concept of managing persistent entities by also managing the relations between these
entities.

The principle of the MDA is that only the transformation rules or the code gener-
ation templates have to be adapted to reflect a change in the underlying technology.
Tool vendors claim that the change from EJB 1.1 to EJB 2.0 can be done amazingly
quickly using the MDA approach (see, e.g., [337]). This example of changing from
one version of EJB to the next is far more realistic than a change from a CORBA
implementation to, say, the .NET framework.

However, it is possible that a technology change has consequences that even in-
fluence the PIM. The architecture must be carefully checked to see whether the PIM
has to be adjusted or not. In the reference architecture, there are some architecture
decisions that are driven by properties of the chosen technology. The fact that ac-
cessing Entity Beans used to cause a performance penalty in EJB 1.1 influenced the
decision on how business entities are mapped to Entity Beans. The way EJB 2.0 han-
dles relationships between entities offers the chance to remove some code that used
to be considered business logic, since relations are now dealt with by the container.
Recall our example in Fig. 3; using the new possibilities the relation between mem-
bers and the companies they work for can now be modeled explicitly and dealt with
on the level of the application server instead of in the business logic. In our example,
the PIM can remain unchanged, but parts of the implementation of the handwritten
business logic, e.g., the validate() method of the Member entity in Listing 5,
have to be adapted manually.

A platform change is always a migration project that involves effort and risks.
Without using the MDA, that effort could be moderate or considerable, depending
on the system’s architecture. But in the light of the MDA’s promises, we expected the
transition to be smoother. In general, the business aspects are fairly well separated
from the mapping to a particular technology which eases the transition. Nevertheless,
we found that once again the devil is in the detail.

To sum up our experiences, we observed that the technological change from EJB
1.1 to EJB 2.0 was accomplished with changes in the reference architecture, the gen-
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eration templates, and the handwritten extension of the generated code. In our case,
the MDA approach did not cover the transition completely transparent but required
some manual adaptation. Changing the access logic was easy and had no influence
on the architecture and the PIM, but changing the relationships involved substantial
changes in the architecture. However, it would have been possible to use the new
technology without our changes to the architecture and the code, but that would have
implied not taking full advantage of the new features.

It is important to bear in mind that after the system is ported to a new platform,
a complete and systematic test has to show that the system functions and behaves as
expected.

3.2 Evolution of the Reference Architecture

The reference architecture (see Sect. 2.4) is a set of reusable structures and best prac-
tices regarding the system architecture. It is likely that the reference architecture will
change over time. In this situation there are two options: either the changes are dis-
regarded, or instead only the original reference architecture is used. This strategy
avoids changes to the models, all the necessary testing, and so on. However, it im-
plies that from now on, there are two versions of the reference architecture and its
generation templates in productive use. A sophisticated configuration management
system, accompanied by an appropriate process, is required. In this case study, we
analyze only one system. Even here, a versioning problem between the templates and
the system is visible. MDA aims at an environment where several similar systems can
reuse the same templates in order to build on reliable, proven technical solutions. In
such an environment, the versioning issue might well become a real challenge.

The second strategy is to adopt the new architecture, which gives us the chance
to take advantage of improved architecture concepts, possibly improved implemen-
tations for parts of it, and so on. In this case, the changes are reflected in the UML
stereotypes and in the code generation templates. It is the task of the architect to
check whether the PIMs have to be adjusted or not.

Note that applying the MDA without using any reference architecture is not pos-
sible. Relying on the tool vendor’s set of UML stereotypes and transformation or
generation rules is nothing more than implicitly using the vendor’s reference archi-
tecture. In our example we decided to use our own architecture in order to remain
independent of yet another innovation cycle.

3.3 Change in the Development Tool Chain

MDA systems depend on a complex tool chain. Section 2.3 demonstrated an example
that can be used for MDA development. Now consider changes in that tool chain.

Replacing the modeling tool becomes quite complicated since many modeling
tools use their own dialect or extensions of the XMI standard which are not com-
pletely compatible with each other; porting models from one modeling tool to an-
other often proves difficult. One of the reasons is that the XMI 1.1 standard does
not clearly define how to store diagram information (size and position of the model
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elements); therefore, if that information cannot be converted, models have to be re-
drawn. See Listing 2 for a proprietary, non portable solution.

Exchanging the MDA tool would imply rewriting and retesting all templates for
all generation steps because they are specific to AndroMDA and cannot be used by
any other tool. Since these templates are intended to be usable in more than one con-
text, the effort can become enormous because more than one system might depend
on it.

The MDA does not clearly define the term “platform”, and does not clearly state
the properties of a PIM or PSM. Therefore, all tools that claim to be “MDA com-
pliant” have to interpret these concepts. Not only that, but also the transformation
and generation process works differently in all MDA tools on a technical level. Even
worse, every tool can have a different notion of which information exactly is ex-
pressed in a PIM, and which information comes in only in the PSM or in further
generation steps. The consequence is that a PIM that can be used with one tool might
possibly not be used with another tool. Not only the templates, but even the PIMs
would have to be re-written if the MDA tool was to be exchanged. The same holds
true for the business logic. Consider using OptimalJ [337] instead of AndroMDA:
OptimalJ uses different mechanisms to generate code and to integrate the handwrit-
ten business logic. Hence, exchanging the MDA tool implies massive changes to the
system, or even a complete rewrite.

In our example set-up, we use AndroMDA which in turn uses the Velocity script-
ing language for code generation. Velocity is an open source product with its own
release and innovation cycle; changes in the Velocity language are beyond the control
of AndroMDA’s developers. If the Velocity language should change or be replaced
by something else, the templates, which represent the architecture and its technical
realization, will need to be rewritten.

The currently available MDA tools are young and actively evolving – and there-
fore provide a very dynamic development environment. Using commercial tools in-
stead of open source tools, the situation is no different, as MDA and UML are both
standards that are continuously being evolved. The MDA specification still leaves a
lot of room for interpretation; tool vendors have to define what exactly to include in
a PIM and how to translate a PIM via a PSM to compilable and deployable code. The
effect is that MDA systems are not really portable from one set of tools to another.

3.4 External Evolution of UML, XMI, or MDA

As discussed in Sect. 1.1, changes to the infrastructure (run-time or development
tools) might be beyond the project team’s control, but might have a major impact on
the project. The same holds true for the modeling method used in the development
of the system.

In the same way as other systems depend on the programming language being
used, MDA systems depend on the modeling language – which the OMG defines to
be UML. The UML standard itself is still evolving [333]. As present, UML 2.0 will
soon be defined. It will bring in new elements which will be useful for modeling
components of MDA systems, which is not easy with the current version of UML.
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Consider as an example the new feature to define components. So far, the package
element was “abused” to declare business components, as Fig. 3 shows. Now the
maintainer of the reference architecture has to decide whether to use this feature or
not. If it is being used, PIMs will have to be adjusted accordingly. If it is decided
to offer both options, some PIMs will use components, while other PIMs will use
packages, so the PIMs will become inconsistent and harder to maintain.

On the one hand, ongoing improvement is an indicator of an innovative environ-
ment which will provide modern development methods and tools. On the other hand,
it does not provide a stable environment as desired for a long-term development and
maintenance project. The evolvement of UML 2.0 and beyond cannot be foreseen
today.

This has two consequences. First, we know that tools will be upgraded, and com-
patibility issues will come in. Second, newer modeling languages will be more ex-
pressive, more detailed, more powerful. If we want to use new features, the existing
part of the system soon becomes a legacy system. The modeling method introduces
another external innovation cycle into the project, in addition to the ones discussed
in Sect. 1.1.

It is hard to exclude external innovation cycles from a software system because
the line between internal and external components is difficult to draw, e.g., the refer-
ence architecture is typically external to the project; however, if a proprietary archi-
tecture is used instead of a vendor’s architecture, it might be internal to the company.

Note the difference between the MDA approach and the compilation process of
higher-level programming languages. After compilation of a higher-level language
program, the resulting assembler code or object code will not be modified. But this
is exactly what happens using the MDA approach: a PIM is used to generate a PSM
and finally code, and the PSM as well as the generated code are fine-tuned for the
platform and enhanced by the business logic. Different tools that produce different
code are incompatible since the business code that is added after the generation step
might not be reused without a change.

This argumentation is in line with what the OMG say about the MDA [331]; they
hope to reduce those dependencies in the future:

“Still, developers will have to fine-tune the produced PSMs to some extent, more
in early days of MDA but less and less as tools and algorithms advance.”

3.5 New Requirements

Consider the following enhancement of business requirements to our example in Fig.
3. The car sharing company extends its business area and becomes international.
Invoices need a new attribute for the currency in which each invoice item is billed.

It is easy to add the attribute – no matter whether the system is developed with
MDA or handcoded. The hard part of this change request is its complete definition on
the business side. How is the invoice item to be coupled with the exchange rate com-
ponent? Is there an exchange rate component at all? How do you deal with historical
exchange rate data? What other components will have to be considered: only the in-
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voice component, or also the customer component to save the currency in which a
customer wishes to receive the invoice?

Those questions and their answers have a major impact on the maintenance costs
and risks, regardless whether the change is actually implemented by hand either in
the code or in a model. Maintenance costs for changed user requirements are largely
driven by clearly defining the requirements. This is not an area that the MDA tries
to improve, but it is where a large part of the maintenance effort and cost is utilized
[350].

In any case, it is necessary to develop new test cases and to regenerate all modi-
fied components, which again requires thorough testing.

4 Related Work

Aspects of software maintenance and properties of maintainable systems are dis-
cussed in [350, 284] and in the software architecture literature, e.g., in [30], to name
just a few sources.

Critical views on the MDA are expressed by Dave Thomas [424], Steve Cook
[68], and Martin Fowler [130] who compare the MDA approach to the ideas of CASE
tools in the 1980s, “and CASE clearly failed to live up its promises” [68]. Cook
promotes Microsoft’s MDA alternative. All authors mainly discuss the development
of systems using MDA. The maintainability of such systems is not treated.

Parts of this chapter were previously published in [385] and in [36].

5 Conclusion

MDA offers an interesting approach to model-based software development. The core
concept of the MDA is to formulate the business logic in a Platform Independent
Model (PIM) that uses stereotypes such that elements in the model are explicitly re-
lated to the architecture concepts of the system. Platform-specific properties and the
mapping from architecture concepts to the technical realization come in via model
transformation and code generation steps.

In this chapter, we analyzed this approach with respect to the maintainability of
software systems in the long run. Since the MDA promises to make the business
aspects independent of the technical platform, we focused our analysis on changes
at the technical level. The results are ambivalent. We found changes in the techni-
cal run-time infrastructure where it is relatively easy to adapt the software system,
whereas other show a major impact on the system at several levels. Pattern-based
model transformations and template-based generation of uniform code are easy us-
ing current MDA tools. Changes that are structurally fairly simple but have a wide
scope on the system are easy to realize.

The most important lesson of our study is that while the MDA at least partly
manages to decouple some business aspects from the technical infrastructure, it in-
troduces new dependencies between the software system, the tool chain, the model-
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ing method and language, a reference architecture that has to be used, and a generic
implementation of that architecture.

All these elements have their own innovation cycles; so for the maintenance of a
software system built using this approach, one has to keep track of all dependencies
as well as of all innovation cycles. This is a challenging task, especially since the
MDA is an evolving technology. The MDA specification, the UML standard, tools,
and languages for model transformation as well as for code generation evolve quickly
as more experiences using the MDA become available. A standardization process is
ongoing. In the meantime, this leads to strong dependencies on the tool chain because
proprietary solutions have to be widely used in all software artifacts, models, and
code. There is certainly the danger that software systems implemented today will
become legacy in just a few months.

The reason is that currently, the MDA is under-specified. Several gaps in the
MDA have to be filled with corporate knowledge, for example, with an in-house
reference architecture, or with a tool vendor’s standard definitions for stereotypes
used for the PIM and PSM. Also, the UML itself is not expressive enough; it is
enhanced by appropriate profiles, containing all needed stereotypes. These profiles,
again, are subject to evolution.

The high dependency of MDA systems on the tool chain is visible in Fig. 2. Even
though there are high-level models that are only concerned with business aspects at
the beginning of the tool chain, the other artifacts that are generated on the way
to the deployable code like PSMs and generated code, have to be fine-tuned and
enhanced. Here lies the fundamental difference between the MDA approach and the
compilation process of higher-level programming languages: no one would go and
change the assembler code generated by a compiler in order to optimize it for specific
hardware. Therefore, the MDA as of today is a supporting process but not a new
programming paradigm.

Outlook and Further Research

Our analysis is only a starting point for bringing MDA into a productive environ-
ment. Further important research areas include the development and maintenance
process. The specific requirements for configuration management and release man-
agement must be addressed in order to synchronize the maintenance of templates and
tools on the one hand, and the business applications, on the other hand. An environ-
ment with such young and actively evolving technologies requires sound technology
management. On the technological side, expressive and reliable standards for the
transformation of UML models and for the generation of source code are required.
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Summary. This chapter addresses challenges for model-driven development of embedded
systems in industrial practice. These are rooted in the necessity of flexible development of
new functionality at low development cost. Where a dependability requirement is added, e.g.
support for assurance of safety requirements, then extending functionality by plugging in a
new component, or modifying an existing component, without extensive safety-related and
fault tolerance tests, is far from today’s industrial practice.

The chapter highlights lessons learnt from three applications of model-driven develop-
ment for high-assurance software components. The components were embedded in vehicular
safety restraints, aerospace, and secure radio communication systems respectively. While our
experiences in these three fields of application are compared and contrasted, the emphasis will
be placed on the specific requirements of safety-critical software in aerospace systems with the
following three characteristics: long life, high level of assurance, and forthcoming demands
on efficient upgrades of assemblies of components. We discuss the need for relating intent
specifications to formally verified design models from which safety-critical code is generated.

1 Introduction

Model-based development of embedded software is promoted as a means to achieve
cost-efficient development of code, and platform-independent design. If successful,
the model-based approach is a means of realising the “correct by construction” phi-
losophy whereby flaws in a product design are discovered early at the design stage.
Once adequate analysis of the design models assures adherence to system require-
ments, generating executable code is a systematic process that translates models to
platform-independent and platform-dependent parts respectively. The idea is very at-
tractive amid the increasing drive for higher efficiency in producing embedded soft-
ware. Software is undoubtedly the essential ingredient in introducing flexibility in
product upgrades and achieving shorter time-to-market for novel products. The ques-
tions that are central to the studies in this chapter are: does model-based development
of software aid in developing embedded software that has specific extra-functional
requirements such as dependability and small footprint, and does it support future
upgrades including integration with legacy code?
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The chapter summarises experiences from three case studies performed during
year 2003 and points out the important aspects that need to be strengthened in to-
day’s tools before the vision of model-driven embedded system development can be
a reality in high-assurance systems. All three applications were in domains where
some element of assurance is present: a future car airbag system being developed at
the Swedish subsidiary of the company Autoliv [113], an encryption terminal (Tiger
XS) for secure communication on top of any communication equipment at the com-
pany Sectra [158], and a sanitised version of an unmanned vehicle with multi-mode
control (also human operated) at Saab Aerospace [110]. All three case studies aimed
to ascertain the benefit of the current modelling environments to the developers of
these systems, including the above criteria: efficient generation of usable code, ease
of assuring dependability requirements, and support for system upgrades and inte-
gration.

The three application areas also have individual characteristics that are distinctive
for the different classes. In the airbag system the main goal is to enable rapid product
development amid changing technology. Thus, the company requires a faster and
more reliable means of porting a subsystem that was, for example, developed for a
16 bit processor that has 128kb ROM to a 32 bit processor with 256kb ROM. For the
company, automatic code generation was studied as a means to increase efficiency in
product development. Another main characteristic was the timeliness requirements –
having 30 ms between the crash detection and firing of a restraint implies that some
algorithms have to be computed predictably (and within 500 µs).

In the Tiger XS communication platform the main requirements are integration
with legacy code , platform independence, and security assurance. Tiger XS acts as
a component in defence systems. It acts as a bridge that makes any secure applica-
tion (e.g. encrypted phone calls or encrypted SMS) run on top of any communication
hardware (e.g. PDA or phone), and transforms “black” clear text data to “red” en-
crypted data. Hence, automatically generated code that refers to operating system
primitives has to be easily adaptable to new underlying platforms. Moreover, the
security-intrinsic applications demand that the generated code should follow a pre-
defined coding style and be suitable for human inspection.

Both of the above applications have small footprint requirements and thus es-
sentially expect the size of the automatically generated code to be comparable to
the handwritten code (the airbag system being at the extreme with its byte-optimal
handwritten code). In the third category of systems, the aerospace-related case study,
footprint is a less dominant requirement. Instead the long lifetime and the safety-
critical requirements of the system imply that any upgrades made to the system over
its lifetime should be easily traceable to the original intent specifications. Since an
aerospace product has to go through well-established assurance procedures and the
certification of the new generation of a product is as strict as the certification of the
earlier generation, the upgrade verification has a special status. Efficiency in code
generation has to be followed by efficiency in the verification process, assuring that
component upgrades do not jeopardise system, level safety requirements. This re-
quirement is the one that is least covered by the literature on model-based develop-
ment and therefore deserves special attention in the current chapter.



Intents and Upgrades in Component-Based High-Assurance Systems 291

2 Intents and Upgrades

From the three case studies one could initially deduce that automatic code gen-
eration (to enhance shorter time to development) is an essential property of tools
that intend to bridge the gap between user-level requirements and the implemented
code. Safety-critical code has, however, the additional characteristic that the orig-
inal sources of its requirements, often linked to system-level hazard analysis and
mitigation of fault/error scenarios by architectural solutions, need to be clearly doc-
umented as intents, and traced to any future changes in the design or implemented
code. Moreover, all changes to the design are followed by studying their impact on
the documentation of the safety case. Also, a modelling tool that supports formal
verification makes the extra difference in this context.

Upgrades necessitate replacing one component with another, or modifying one
component in some respect. The upgrade process is especially costly for safety-
critical systems as much of the analysis and review of the safety arguments has to
repeated for every significant change to the system. We believe that tool support
in this industrial sector needs not only to encompass fast time-to-market and sup-
port for formal analysis, but also to support cost-effective upgrades. In this section
we briefly review the potential approaches for developing high-assurance systems
that are built from components. These may range over components that are acquired
off-the-shelf (no source code) to components that are developed in accordance with
model-based development techniques with design specifications and automatically
generated code. We briefly cover two broad areas that gained attention in recent
years: the component-based approach to development of software-intensive systems,
and the approach that can be labelled as “constructing the correct”.

2.1 Dependability and Components

The software engineering community [416, 77] is promoting methods for develop-
ment of systems from components and is, to begin with, trying to define the notion
of components by providing a number of examples (e.g. [434]). However, the em-
phasis in the work up to now has been on the efficiency in the development process
as opposed to assurance procedures. Especially, the compositionality of the extra-
functional properties has only recently gained attention. The problem with extra-
functional properties is that they are typically defined at the system or service level.
It is therefore not trivial to pin down the properties that a component should have
in order to satisfy the system-level properties when placed in the context of other
components. In some sense there is an inherent conflict between separation of con-
cerns (thereby restricting some design analyses to the component level) and overall
guarantees for system/service-level properties.

Let us consider a few examples of non-functional properties. A prime concern
in most high-assurance embedded systems is adherence to end-to-end timing con-
straints, and the two specific attributes of dependability [23], namely reliability and
safety. Real-time properties are cross-cutting concerns and it is not possible to assure
a real-time service by a system assembled from components unless the component
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model captures the parameters needed for real-time analysis in a well-defined man-
ner [423, 422]. This is an area of work that has recently attracted attention with some
progress in sight. But what can be said about component assemblies and assessing
the safety of the system from characteristics of the components? The first obstacle
that one meets is that assessing system safety and reliability has been predominant
in hardware-intensive systems, so many approaches to assessment are hardwareori-
ented. Extending these methods in a systematic way to software components is only
at early stages of research [379].

A widespread myth about software is that the smaller the software unit, the higher
its reliability. A study by Jones shows for example that the number of delayed and
cancelled projects dramatically increases as the number of function points (a mea-
sure of size) increases beyond 5000 [236]. At this level of complexity (roughly corre-
sponding to 500k lines of code in languages like Fortran) 79% of the projects are can-
celled or delayed by over 6 months. Thus, the ability to deliver a software-intensive
product that satisfies the specification efficiently is obviously a major problem.

A valid question is therefore: can we increase the reliability of a system by break-
ing it down is to small manageable components? A follow-up question is: if we have
demonstrated/estimated the reliability for a component how can we derive the relia-
bility for the whole system based on a composition of the reliability measures for the
parts? There are some initial attempts at answering these questions based on histori-
cal studies of modular designs. Hatton shows for example that the size–complexity–
fault frequency relation is not linear and there are some medium-sized components
that exhibit higher reliability compared to both smaller and larger components [199].
With regard to aggregation at system level, Hamlet et al. propose a theory for the
compositional calculation of reliability metrics based on component metrics. Never-
theless, they contend that the theory needs to be validated in experimental settings
[185].

Safety is the ability of a system to avoid harm to people and the environment.
Hence, a car that never starts may seem to be safe by definition (although not quite
reliable!). However, a car that does not start can indeed pose a threat to safety if it
happens to stall on a railway crossing. In both cases the car fails to meet its reliability
requirements. In the latter case it creates a potential threat to safety. Thus, safety is
a property that intrinsically emerges from the behaviour of the system under design
and the conditions in its environment.

Since there is no way that software on its own harms people or the environment,
it is incoherent to allocate attributes such as safety to a piece of software or dig-
ital hardware. Software or digital hardware can only be examined in terms of the
ways they may contribute towards the appearance of hazards. Hazards are failures
that may potentially lead to violation of safety. Hence, traditional analysis of system
safety starts by considering the potential unsafe scenarios, characterising the risks
for the hazard to take place (both in terms of probability and in terms of severity
of consequences), and making a quantified decision on which scenario to consider
as one that should never happen – no matter how the constituent components in the
system are designed, developed, or operated.
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Traditional analysis of system safety rests on techniques that focus specifically on
“things that may go wrong”. Fault-tree analysis (FTA) and failure modes and effects
analysis (FMEA) are old techniques that grew within the era of building systems
from hardware (mainly mechanical) components. One can contrast FTA and FMEA
by considering one a top-down and the other a bottom-up technique. In other words,
in FTA analysis one is interested to know, given a potential failure in the system
(a top-level event), what are the combinations of conditions that necessarily cause
that event. In FMEA one tries to consider each and every constituent of the system,
and trace the effects of errors manifesting in that constituent. An interesting area of
work is to extend the traditional safety analysis techniques so that they can indeed be
applied to software-based systems too [187, 178].

According to aerospace experts most errors are found in the interface between
components, either because the original specification was incomplete (had forgotten
to specify some aspect), or because it simply made wrong assumptions. A typical
case is that one forgets the dependencies between several components, and when
one component is updated/changed, the potential changes in other subsystems are
not fully considered, or corresponding changes introduced there. An example is an
attribute such as measured wheel velocity. If one reduces the number of pulses per
rotation the resolution of the measurement is decreased. This might be favourable
in terms of costs in the landing gear system, but the change might affect other con-
sumers of the information. So the supplier of the landing gear system may move on
to a cheaper realisation, not considering the changes implied in the flight control sys-
tem or pilot information system. The way such changes are propagated in the system
are by administrative processes: meetings, agreements, reviews. Thus, we are inter-
ested in studying whether component-based or model-based development paradigms
can support the assurance procedures for a system that is upgraded by changing one
or more of its components.

2.2 Constructing the Correct

The traditional formal development process that can be labelled “correct by construc-
tion” has a natural extension in the model-based development paradigm. The claim
is: if the design can be formally analysed, one can demonstrate that the known causes
of failures that may violate safety, as identified by hazard and risk analysis, have
been removed. Such a design model can thus be a sound basis from which automatic
code generation can produce high-assurance components. A seemingly opposite ap-
proach that may be labelled by the slogan “constructing the correct” amounts to
applying formal verification techniques directly to source code. Since this approach
has gained momentum in recent years, we believe that the proponents of model-based
development need to consider the impact of these techniques in future development
processes.

The “constructing the correct” school is both old and new. Early versions of the
idea can be traced back to the work by Hoare and Floyd on the formal analysis of
programs (late 60’s). In those years, the ability to reason about the behaviour of a
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structured program in terms of assertions at entry and exit points, based on deduc-
tions after execution of every program statement, was put forward as a fundamental
argument for constructing correct programs. One might argue that the early struc-
tured languages of 70’s were equivalent to the high-level modelling notations (e.g.
UML family of languages) of today. Thus, early proponents of “constructing the
correct” were indeed acting as today’s proponents of the model-based formal verifi-
cation (and thereby correct by construction idea). However, high level programming
languages are no longer at the top of the abstraction hierarchy today. Instead, one
could characterise the proponents of this approach by goal to find errors in real exe-
cutable software in an efficient manner. The claim is that in the end what is running
in the system to be delivered is the code. So, high-assurance systems have to find a
way to guarantee a predicable behaviour by the control software.

A good overview of the recent trend in program verification can be found in ar-
ticles by Havelund, Visser, and co-authors [202, 447] where it is clearly emphasised
that the purpose of investigating verification techniques for program code is not that
design verification is fruitless. Rather, it is recognised that many software engineers,
instead of detailing construction decisions in a design, prefer to write the code di-
rectly. Also, tools that support design models, e.g. UML, allow the modeller to in-
clude code fragments in a UML model. Hence, verifying the code is promoted as an
efficient assurance method. This approach is followed for several programming lan-
guages, among them Java, C, Ada, and hardware design languages, e.g. [65, 40, 58].

2.3 Dependable Assemblies of Correct Components

Based on the short review above we believe that upgrading dependable systems based
on updating and replacing components is an area that model-based development
needs to address in the future. The overall methodology can be sketched as follows.
Each developed component needs to carry with it information about its effect on
overall system behaviour with respect to extra-functional properties. These could be
interfaces that capture timing behaviour of the component, or interfaces that tell what
behaviour can be expected from a component if the assumptions on its environment
are invalidated by external (unintended) faults. The latter can be used in a similar
manner to FTA/FMEA that is carried out on assemblies of hardware components.
How the interfaces are derived and how they are used in an upgrade process are an
interesting field of study, but it seems that there will be potential use for both par-
adigms, correct by construction using model-based development, and constructing
the correct, where the source code of a component is assured to satisfy its contracted
interfaces by its team of developers. In either case, the remaining step would be to
assure that given certain interfaces the assembly of (upgraded) components satisfies
its system-level properties, e.g. safety-related requirements. This requires proof tech-
niques that build up incremental proofs based on earlier analyses and thus achieve
the overall assurance in an efficient manner.

None of the tools and environments for model-based development are mature
enough to satisfy the above needs. We use the details of three case studies to illus-
trate this gap and hopefully provide a benchmark for future studies. Two of the case
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studies concentrate on the needs related to the automatic generation of code. Since
there is more maturity on the tool front in those respects, we will report on these in
less detail. The third case study, a sanitised example of an unmanned vehicle that was
provided by Saab Aerospace, serves to illustrate the need for tracing intents to for-
mally verified component code. This example, although much simpler than any real-
istic aerospace application, has some elements that illustrate the need for (1) support
for intent specifications and tracing the system-level requirements over a long life-
time, including the need for tracing changing requirements all the way down to new
design models of upgraded components, and (2) the necessity of support for formal
verification to achieve efficient verification of safety-related properties; in particular,
incremental verification of such properties upon component upgrades.

3 Intent Specifications
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Fig. 1. The structure of an intent specification [72]

Intent specifications [271] is a new approach for specifying and designing systems
that is based on research in both system engineering and psychology. The primary
difference from other approaches is the structure (see Fig. 1). An intent specification
is structured in seven levels, each level answering the question “why?”, i.e. provid-
ing intentions about the level below, as opposed to traditional specification methods
where levels are divided into answering what to do from how to do it. Each level
is mapped to levels below providing traceability of system goals and high-level re-
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quirements down to implementation and vice versa. Each level has its own view of
the system and is a different model of the system [157]:

• Level 0 is the project management’s view of the system.
• Level 1 is the customer’s view, including system goals, high-level requirements,

hazards, design constraints, assumptions, and system limitations.
• Level 2 is the system engineer’s view of the system and it describes the system

design principles.
• Level 3 describes the black-box behaviour of the system and its modules. Formal

analysis methods can be used on this level.
• Levels 4–6 provide information on the physical and logical representation of the

system down to implementation and maintenance information. These levels were
not the focus of this study.

In the unmanned vehicle case study below, the tool used for implementing an in-
tent specification was SpecTRM (Specification Toolkit and Requirements Methodol-
ogy), a commercial tool from Safeware Engineering [72]. It is a document-oriented
tool that focuses on system requirements and specification. The tool works more
or less as an advanced word processor and uses the intent specification methodol-
ogy as a foundation with the seven levels as different chapters in the specification.
The black-box models in Level 3 are written in a specification and modelling lan-
guage called SpecTRM-RL based on the state-based specification language RSML
that essentially summarises state transitions using AND/OR trees [206]. The primary
goals of the language were readability and reviewability, completeness with respect
to safety, and assisting with system safety analysis of the requirements [272].

SpecTRM provides simulation and some static analysis of the SpecTRM-RL
models and also limited support for traceability. By executing the models and sim-
ulating the system, the engineer can study the behaviour of the system before the
actual implementation. The formal analysis tools available are robustness and deter-
minism analysis. By analysing robustness it is meant that SpecTRM checks if the
modelled system has a specified response for every sequence of inputs to the system.
By analysing determinism it is meant that the tool checks if several behaviours are
specified for the same sequence of inputs. However, both of these analysis tools are
conservative, thus generating false alarms as possible examples of non-determinism
and non-robustness.

4 Support for Upgrades

The development process followed by most companies today, at least in the safety-
critical arena, follows what can be considered as a variant of the V method. It essen-
tially assumes a strict control of the integrator company over the developed compo-
nents (in-house or subcontracted).

Model-driven tools and especially the UML-based support have grown from the
world of software development, with the advent of object-oriented design, in the last
two decades. The safety requirements of aerospace systems can, however, hardly
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be traced to a software component alone. Software is typically not harmful to the
environment and can only contribute to violation of safety. Achieving safety is typ-
ically ensured by a mix of architectural decisions [266] and rigorous process for
system development based on functional decomposition. Examples of architectural
decisions are incorporation of fault tolerance via redundancy, hardware interlocks as
a backup for software failure, watchdogs, monitors, and so on. An interesting ques-
tion is: how to support the engineers who primarily perform system development in
the old worlds of structured design, to encompass the “new” world of software de-
sign, and link the two in the systems and safety engineering process? An orthogonal
question is, how to support the process of upgrading an existing component when
new functional or safety requirements arise?

In current system development processes all the safety analyses, including FTA
and FMEA mentioned in Sect. 2.1, and component-level and system level verification
have to be redone for every upgrade in the life-cycle of the system. Model-based
development needs to address how this process can be “shortened” by making an
efficient analysis that assures preservation of safety properties.
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Fig. 2. The Sigma development process model

Elmqvist [110] presents the Sigma development metaphor as a model for system
level upgrades based on component updates (see Fig. 2).The model captures the iter-
ative upgrade process of existing components as well as the analysis processes that
are essential during a system’s life-cycle.

4.1 Example: Unmanned Vehicle

The unmanned vehicle is controlled by the Remote Vehicle Control Unit (RVCU).
The vehicle operates inside a closed area (see Fig. 3) consisting of a work area, a
parking area, and (stationary) obstacles. The vehicle can be controlled by the operator
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either hands-on with a joystick or by planning missions. Once it leaves the parking
area, the vehicle is not allowed to stop.

Work Area

Parking
Area

Fig. 3. A possible environment with obstacles for the unmanned vehicle

Vehicle

Control System

Human Machine
Interface

Navigation
System

Planner

Operator

MODB

Fig. 4. The RVCU architecture

The role of the RVCU is to make sure that the vehicle is controlled safely inside
the area, i.e. avoiding collisions with obstacles and stopping the vehicle navigating
outside the closed area.

The Dynamic Window Approach by Fox et al. [132] was used for obstacle avoid-
ance. The algorithm calculates an optimal trajectory by reducing the search space of
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possible velocities based on the dynamics of the vehicle and the position of the ob-
stacles. The algorithm was slightly modified to fit in the context of the unmanned
vehicle example.

The five components of the RVCU are presented in the architectural model in
Fig. 4:

• The Human Machine Interface is the interface between the operator and the sys-
tem.

• The Map and Obstacle Database (MODB) provides a representation of the map
and the obstacles.

• The Planner takes care of high-level mission planning during unmanned mis-
sions.

• The Navigation System handles the final control of the vehicle by using the Mod-
ified Dynamic Window Algorithm.

• The Control System is the coordinating module that besides interacting with both
the Planner and Navigation system also communicates with the robot.

The RVCU can be considered a safety-critical real-time system as the collisions
with the obstacles or moving outside the designated area can be considered to result
in harming people or the environment.

To illustrate lifetime changes we have added a new system requirement, and con-
sidered the effects of an upgrade to satisfy that requirement on the existing design.
The stationary obstacles in the first design are considered to be moving objects in the
new upgraded version.

5 From Specification to Design

The third level of intent specifications described in Sect. 3 is quite close to a design
model but does not (yet) have the ambition of supporting model-driven development.
Level 3 in SpecTRM provides an input/output interface for each component, and
a description of the internal states and externally visible modes of the system. In
addition, it gives a human-readable logic for state transition conditions in terms of
AND/OR tables. However, to go from intents to implementations, and in particular
via designs whose dynamic properties are formally analysable, we need a bridge to
a tool that supports both code generation and formal analysis.

In the RVCU case study we chose the Esterel Studio programming environment
for further development of the model [420, 38]. The choice was primarily motivated
by the support for formal verification in Esterel, using the Prover plug-in model
checker that can deal with systems with large state spaces using Stålmarck’s method
[392]. It also exemplifies a tool that is suitable for this class of applications due to
its ability to deal with heterogeneity. Esterel designs have Mealy machines as formal
semantics and are as such suitable for hardware/software co-design. A high-level
description of an application can be translated after formal analysis to code that is
the basis of a software implementation (C code) or hardware implementation (VHDL
code).
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Another benefit of using this environment in our safety-related case study was
that the same environment (the same design model) can in fact be used as a test bed
for study of the FTA and FMEA by systematically plugging in failure modes for var-
ious inputs or outputs of a component and studying the effects of single or multiple
faults in terms of violations of safety at system level [186]. This combines model-
based development with formal analysis of safety (in the spirit of FTA/FMEA) using
the same design model, and without building fault trees.

6 Results and Lessons Learnt

This section outlines the results of the application of model-driven development to all
the three application domains, and in each case summarises the remaining challenges
facing the application developer. We begin with the unmanned vehicle example as it
was described in more detail here, and then briefly describe the comparison with the
other two studies mentioned in Sect. 1.

6.1 Upgraded Unmanned Vehicle

An upgrade of the requirement was done after the initial design and verification of
the unmanned vehicle control system. Instead of having static obstacles inside the
closed area, the vehicle should be able to avoid moving obstacles.

The study proved SpecTRM (version 1.0.14) to be a rather immature tool and
more suitable for the design of control-handling modules such as the Control System
than data-intensive modules such as the Navigation System. Further, SpecTRM does
not yet provide any automatic traces or any overview of the traces, i.e. the traceability
must be created explicitly by the developer as hypertext links. A more sophisticated
support for traces would be appropriate in order to make the tool suitable for indus-
trial use.

One could question the use of an intent specification tool when there are already
more mature requirements engineering tools (such as CORE [73] and DOORS [421])
available on the market. The reason we thought a tool like SpecTRM was interest-
ing in the context of the case study was that the tool was supposed to support the
hierarchy of models described in Fig. 1 that is well-suited for safety-critical systems
development. Also, earlier experience with the SpecTRM-RL language had proven
to be positive in terms of communication with non-experts and thereby ease of val-
idation of the early requirements. In contrast to the structure of the above Level 3
models, which are quite understandable to engineers from different disciplines, the
software-engineering-oriented tools like DOORS that build upon the object-oriented
notation have so far been less accessible to other engineers. However, the SpecTRM
tool was not able to provide convincing support to the involved engineers to justify
its use in the current status.

By manually converting the SpecTRM-RL models to Esterel modules, Esterel
Studio could be used to verify the system and its components. Esterel Studio and
its built-in model checker were able to prove a majority of the control properties of
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the RVCU. However, Esterel Studio does not provide any framework for modular or
compositional verification. After the upgrade, the original verification process had to
be redone. Furthermore, dealing with numerical properties in the 2003 version of the
Prover plug-in was insufficient for our purposes.

We conclude that a tool environment that aids the developer, beginning with a
specification language such as SpecTRM-RL down to verified code, is needed but
is not fully available today. The unmanned vehicle example was indeed tried on a
tool chain that combines SpecTRM and Esterel Studio, but with a lack of automatic
translation between the tools, any of the tools could be replaced by another alterna-
tive. A case study by Leveson and Weiss also addresses the use of SpecTRM and
intent specifications in model-based development [272]. However, their focus is on
reuse at the software behavioral specification level and they do not address the issue
of generating and verifying code.

A positive aspect of the SpecTRM implementation is its use of the Java-based
Eclipse [98] environment that allows plug-in translators to be added conveniently.
A trial plug-in, SpecTerel, that automatically translates very simple SpecTRM-RL
models to very simple Esterel models, was implemented within a few days as a proof
of concept.

6.2 Secure Communication Platform

The Tiger XS module is a software platform that provides a middleware function in
a larger software system development. Here it was obvious that tools that support the
object-oriented design process are the main candidates. Among the UML-based tools
for code generation two representatives were studied in terms of the requirements of
the case study: Rhapsody from iLogix [216] and Visual State from IAR systems
[214]. However, in both cases it was found that both tools provide too much and too
little support respectively.

Rhapsody provides too much support in the sense that it has a powerful extended
UML language having a comparatively steeper learning curve. However, the primary
reason for not being considered as a candidate for tool generation at Sectra was that
it targets complete systems and some difficulty was experienced in merging existing
(legacy) C-code for other parts of the application and the automatically generated
Target XS code.

Visual State, on the other hand, was a lightweight tool with little extra function-
ality. In particular, it was possible to adjust the coding style to the style required by
Sectra by implementing the translation of the action language (the part that defined
effects of state transitions in terms of new value assignments to variables) so that it
suits the in-house requirements. The main weakness of the tool in this specific case
was the support for integration of the generated C code with other legacy code, and,
in particular, that it was cumbersome to use user-defined types. Also, the automat-
ically generated code was organised in terms of a number of arrays that were not
human readable and satisfactory for security assurance-related inspections.

Although both tools were considered to generate small enough footprint com-
pared to the Sectra handwritten code, they were not adopted for the above reasons. To



302 Jonas Elmqvist and Simin Nadjm-Tehrani

suit the needs of this case study, in the end, an interpreter-based translation scheme
was deemed the most useful. It resulted in an in-house code generator based on a
subset of statecharts [158].

6.3 Airbag Software

Rhapsody was also tested as a candidate for the design and code generation of the
airbag software. Here, the architecture of the system was clearly divided into two
types of modules: those that were control intensive and those that were data inten-
sive. Rhapsody in C was found to be a useful environment for modelling the structure
and control-intensive parts of the application as class diagrams and statecharts, re-
spectively. The automatically generated code was tested on a target micro controller
(TX 19A). For the data-intensive parts, the code that implements signal processing
algorithms to detect when the vehicle i.e. has crashed, another tool that is closer to
the data flow abstractions used by the control engineer was deemed useful. The tool
Scade [420] was studied for code generation in this part of the application. Another
useful feature of Scade was the formal verification support with the Prover plug-in
that was tested to a limited extent on the crash algorithm model. Scade is a tool that
is based on the language Lustre [184] with a formal semantics, and has a history
of usage in European aerospace applications (the code is generated by a DO-178B
certified compiler that makes the tool an appropriate candidate for safety-critical ap-
plications).

The use of both modelling languages was found to reduce the time for develop-
ment of code (after excluding the learning time). For a particular airbag function,
this gain was quantified as a 60% decrease compared to the estimated time taken
for handwritten code. The main drawback for the Rhapsody-generated code was the
code size, still a significant factor in choosing such technology in the airbag systems.
The low cost constraints of the ROM violate this option, as the size of the generated
code was twice as large as the optimised handwritten code. In both cases support for
timing analysis of the airbag software was missing, and this needs to be performed
separately.

6.4 Final Remarks

Our studies support the claim by providers of tools for model-based development
that these tools do indeed reduce the time taken for the development of executable
target code from high-level models that are easier to inspect, to communicate, and to
use as a documentation of a fairly complex system. The needs of various application
areas in terms of requirements on the generated code were illustrated by three exam-
ples ranging from very tough code size (memory) restrictions in the airbag system
to less demanding requirements on code size in the secure communication support
and the unmanned vehicle case. None of the tools, however, have component-based
support. This is perhaps not expected from tools like Esterel and Scade that have a
state-based or data-flow-oriented style, close to the environment that other engineer-
ing disciplines are used to (state machine or function blocks). But the enhancement
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from object-oriented tools like Rhapsody to component-based modelling is needed
if compositional analysis of upgrades is to be supported.

Support for documentation of upgrades in a long lifetime, and in particular when
the traceability of the rationale of early design decisions and intents is a prerequi-
site to maintaining safety arguments, is an obvious shortcoming of the pure “code-
generators” in model-based development today. Where intents can be documented
and traced (e.g. SpecTRM), the support for code generation, formal verification,
and compositional analysis of upgrade effects are still missing. Where design-level
models were the starting point (Rhapsody, Visual State, Esterel, Scade), no such
support for component upgrade verification or longer-term documentation of intents
and safety-related arguments was part of the picture. In two of the applications we
observed the dichotomy between data flow abstraction and the state-based control
abstraction. UML diagrams syntactically host both styles of modelling, but the se-
mantic gaps still need to be addressed in tools that aim to support development of
high-assurance heterogeneous systems. In particular, combining the worlds of struc-
tural design (hardware and mechanics) and object-oriented design (software) is a key
to model-based development of component-based high-assurance systems.
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Summary. The Model-Driven Architecture (MDA) as supported by the Object Management
Group (OMG) describes the structural requirements of an engineering discipline where mod-
els, instead of source code, comprise the primary artifact. In this chapter we provide an
overview of the methods and modeling techniques used to support an MDA methodology
for developing protocol processing applications. We demonstrate our approach with examples
from an IPv6 router specification targeted to a customized processing architecture.

1 Introduction

The Model-Driven Architecture (MDA) by the Object Management Group (OMG)
tackles the elusive problem of system development by promoting the usage of models
as the primary artifact to be constructed and maintained. Models are categorized into
Platform Independent Models (PIMs) and platform models which can be realized
using a variety of middleware and programming languages into Platform Specific
Models (PSMs). This is possible only with suitable query and transformation tech-
nology for navigating and modifying well-defined models using common modeling
languages.

As a consequence, software development can be seen as the process of transform-
ing a model into another until it can be executed outside its development environ-
ment. The combined field of model-integrated computing (MIC) and MDA is worth
mentioning here. The first joint effort exploring the synergy between MIC and MDA
was held in October 2004 [176], and MIC itself has been explored over a decade, for
example, at ISIS, Vanderbilt University [223]. The current OMG standards present
a static and structural view of models. They define several standard modeling lan-
guages and standards related to modeling, such as what a valid model is in a given
language using Object Constraint Language (OCL) [169] constraints and how to
store a model in a file using XML Metadata Interchange (XMI) [167]. However,
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they do not discuss how models are created or how models evolve. This may be ex-
plained by reviewing the origins of UML: it was developed as a method-independent
notation to document software artifacts. UML can be used in combination with prac-
tically any software development method and, as a consequence, the OMG standards
do not contain any reference or support for software development. We believe that
the OMG standards should also consider the dynamic aspects of model develop-
ment. This ranges from the basics of model evolution using algorithms for model
transformation to more sophisticated reasoning about why a model transformation
meets new requirements. We may consider that the Software Process Engineering
Metamodel (SPEM) [168] standard addresses this issue. However, SPEM tells us
how to document a process, while “planning and executing a project using a process
described with SPEM is not in the scope [of the standard]”. In order to learn more
about the requirements of such aspects, we are pursuing a methodology and a case
study utilizing such methodology throughout this chapter.

We investigate a possible approach to defining MDA methodology by analyz-
ing the collection of concepts, methods, and tools needed to support such methods.
We also try to classify and evaluate the requirements for the tools supporting the
approach. MDA was primarily created to be used for the specification of software
systems, but some of the ideas can be extended and applied to other domains (e.g.
embedded systems). We propose as an example a design methodology applicable
to the specification and design of embedded systems, and especially of protocol
processing applications. The methodology was used in a larger case study, where
an IPv6 router was specified and designed from scratch. To verify the validity of
our approach, the specification of the router was targeted (implemented) both on a
software platform, using the Java programming language, and on a hardware plat-
form, using the TACO [445, 443] protocol processing architecture. TACO (Tools for
Application-specific hardware/software CO-design) is an integrated design frame-
work for fast prototyping, simulation, estimation and synthesis of programmable
protocol processors. In this chapter we will focus on the latter approach, because
it emphasizes important aspects of model-driven development.

We proceed as follows. Next, we position ourselves with respect to what model-
ing provides us and needs to provide us in the form of languages and facilities. We
describe in Sect. 2 our view on the features that tool support should provide in or-
der to realize a model-driven approach. In Sect. 3 our design methodology is briefly
introduced, including our case study for protocol processing applications and we dis-
cuss challenges in light of MDA philosophy. We show in Sect. 4 how we used the
concepts and tools introduced in Sect. 2 to automate our methodology. We conclude
the chapter with final remarks on the benefits of using model-driven approaches for
system development.

1.1 Models and Modeling Languages

From our point of view, the two main advantages of using models versus source
code to describe our system are that, besides enabling a better abstraction level for
analysis of systems’ properties, we can store all the relevant information needed in
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a software project in the model and that all the information in a model is stored in a
standardized and uniform way that can be processed and transformed easily.

The idea that we can use the same modeling language to describe the analy-
sis, design, and implementation of a system has always been one of the most re-
peated features of UML. Actually, UML lacks in certain areas such as describing
non-functional requirements and real-time domains, but successive extensions to the
standard could alleviate these problems. Indeed, real-time UML is a well-studied
topic [89, 90]. However, there is a clear danger in believing in the silver bullet of
UML. A more realistic scenario is that we have to be able to experiment with new
methodologies and languages, without giving up on what we already possess.

In light of this stepwise incorporation of novel technologies, the need for new
metamodels comes forward. There is a strong need to explore new modeling lan-
guages and concepts, without trying to incorporate everything into UML. Metamod-
eling is the field of describing, evolving, maintaining, and extending metamodels
providing mathematical rigor where possible in the form of (possibly heuristic) ver-
ification, and practical statistics of the models in question. A sound practice is to try
to map between our various metamodels and the UML, which has become the de
facto standard. Transparent mapping of models to other domains provides us with
the required integrity and seamless interoperability.

Many developers see UML as a graphical representation of the source code in the
system. This view prevents us from including other artifacts such as a spreadsheet or
a Mathematica document in our model, even when the contents of those documents
can be relevant to our software. We prefer to consider a modeling language as a
taxonomy of the most important concepts that can occur in an abstract description of
a design.

Another important feature of modeling languages such as UML is that while the
models may be represented diagrammatically using icons, they are stored using an
object graph similar to the abstract syntax tree of a programming language. In the
case of UML, the abstract syntax is defined by the UML metamodel. The metamodel
representation is akin to a directed graph. Each node of the graph represents a meta-
model element and each arc a relationship between two metamodel elements. Some
arcs represent compositions, i.e. whole–part relationships. In the case of UML, if we
consider only the composition arcs, the resulting graph is also a tree. The advantage
of storing a software project as an object graph is that we can traverse the project,
collect, add, and remove information from it in a way that is independent of the tar-
get programming language. This task is simplified by languages such as OCL that
have specific constructs to navigate models. Using OCL or a similar query language
is not restricted to UML, but to the language of metamodels, which in MDA is the
Meta-Object Facility [166].

1.2 Model-Driven Software Development Methods

We define a model-driven software development method as a software construction
method where all the relevant information in the project is stored in some kind of
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an abstract model. Model development is then carried out as a sequence of model
transformations.

Model-driven engineering is the result of recent developments in computer lan-
guages, awareness of the need of software development methodologies, and the con-
stant need to tackle larger and more complex development projects. These forces
are not new. Indeed, we could use the same naming pattern to create terms such as
punched-card-driven development, to describe the development methods used when
compiler time was a luxury, or source-code-driven development, to describe the
methods used in Extreme Programming [34] and many open source projects, where
source code is the key artifact. However, we believe that MDA opens a window for
new development methods and tools that are not available or are too expensive to
implement in other approaches such as source code driven development. These tools
and methods can take advantage of the fact that the artifacts describing our soft-
ware are stored in a standardized way and are, to a certain extent, independent of the
implementation technology.

The description of an MDA method should contain all the elements that are usu-
ally present in any software development method. It should describe which final de-
liverables and intermediate milestones should be produced, which language should
be used to create the previous artifacts, and which tasks we should perform, and in
which sequence, so that we can effectively create the required artifacts. However,
we consider that there exists two main differences in an MDA method with respect
to a traditional development method. First, all artifacts are represented using well-
defined modeling languages. Secondly, and as a consequence, we can create tools
that process and transform all the artifacts in our projects. Therefore, we will re-
quire that all tasks in an MDA method should be performed with the assistance of
specialized tools.

2 Tool Support for MDA

CASE tools have a huge role in the MDA initiatives due to the graphic nature of
models, the way models are stored, and the fact that many of the benefits of these
approaches only arise through automation. Our vision is that a typical MDA project
will be carried out using not one but several development tools. There are many dif-
ferent variables in a project such as translation to the target platform, knowledge of
the application domain, analysis, estimation (e.g. the TACO framework), and we can-
not expect that one single tool will be able to cover the whole development process
for all the necessary variables. Thus ease of communication between these tools is
of essence.

A true common file format for model interchange would allow a market for new
specific tools for model transformation and code generators. Some of these tools
could be specialized in application domains such as real-time systems. In many cases
the selection of tools such as a model editor would be just a matter of personal
preferences as it is now with text editors. This scenario is described in [404] and
it requires two components: a standard interchange file format, and tools that comply
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with it. Unfortunately, in the case of UML, this is still not a reality, as different tools
implement the XMI standard differently. Furthermore, by providing multiple ways
to serialize the same model parts, the standard has only made it more complex for
multiple implementations to co-exist. Also, XMI is designed for the abstract model
and does not contain any information about graphical parts. The XMI-DI standard
for diagrammatic interchange [175] is not yet so widespread, but we hope that this
situation will change in the near future.

We will assume tool support in the form of diagram editors, transformation
frameworks, and similar frameworks as an issue of quality of implementation, and
concentrate on the facilities that they must provide.

2.1 SMW Tool

To create and manipulate the models, we make use of the freely available Software
Modeling Workbench (SMW) [24] toolkit. The tool is built upon the MOF and UML
standards from the OMG, allowing editing, storage, and manipulation of metamod-
els.

SMW is organized in four main layers: the SMW kernel, a generic editor layer,
the language-specific editors, and the method-specific scripts. The SMW kernel is
in charge of representing models in memory. The kernel ensures that the models are
wellformed. It also provides support for XMI, OCL-like idioms for model query and
navigation, and user-defined modeling languages. We have used the basic facilities
provided by the kernel to create a generic diagram editor. The generic editor pro-
vides functionality such as printing or a clipboard that is implemented independently
of the actual modeling language used in a given model. The generic editor can be
customized into a language-specific editor such as the UML editor, an extension to
standard UML, and even other modeling languages, such as the SMW extension to
model data flow diagrams (the SA/RT profile [222]) that we use in our design flow.

2.2 Scripts

An MDA script is a small application that processes a software model in order
to extract information from it, transform it, or create a derived artifact such as
source code. Several transformation languages have already been specified, and oth-
ers are in the planning stages. Examples of transformation languages are QVT [354],
MOLA [242], UMLX [459] and GREAT [61]. In our case, we have decided to use
the scripting language provided by the SMW tool.

The actual method engineering support is provided by customized scripts. We
have identified three script types that are required to be supported by an MDA
process. They operate over model elements as well as over entire models.

(1) Queries are applied on a model expressed in one language and return a set of
elements of the same model expressed in the same language.

(2) Model transformations are applied on a model expressed in a given language
and either modify the model in place, or create a model, possibly expressed in a
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different language. Model transformations conceive a plethora of new interesting
questions and topics, such as transformation taxonomy, correctness-preserving
transformations, consistency checking, and/or verification.

(3) Code generation, although a form of transformation, is sufficiently different
from a model-to-model transformation to merit its own classification. The goal
is to produce suitable input to a second-stage compilation or analysis tool. The
target language is not a metamodel.

The main difference between queries and transformations is that the queries are
free of side-effects, meaning that when applied on a model they do not change the
model in any way. A more comprehensive and systematic classification of model
transformation is discussed on p. 19 of this book.

2.3 Queries: Metrics, Constraints, and Guidelines

The simplest script is a query. A query gathers information from a model but does not
update it. OCL is probably the standard and best known language for UML queries.
Usually a query gathers information from a model in the form of a collection of
elements. In addition, we consider that there are still three other specific uses of
queries: defining software metrics, model constraints, and design guidelines.

The main purpose of a query is to extract, from a model, parts of or all model
elements corresponding to the query condition. An example of such a query is ob-
taining a list of all objects that are instances of a given class. In order to perform the
query we use the method getAllParts that returns all the elements transitively owned
by the object. If we invoke this method with the root element of the model we obtain
a collection that contains all other elements in the model.

1 instances=model.getAllParts().select(lambda c:
2 c.oclIsKindOf(Instance)
3 and c.classifier==someClass).name

A query can represent a design guideline when it is used to verify that all
elements in the model have been created and are consistent with the develop-
ment method. In the following example, the lines 1–3 collect all stereotype names
(ucStereotypes) present in the use case diagram of the system. Consequently,
lines 4–8 create a collection of classes (unRelated) whose stereotype names are
not present in the use case diagram.

1 ucStereotypes=model.ownedElement.select(lambda uc:
2 uc.oclIsKindOf(UseCase)).stereotype.select(lambda st:
3 st.oclIsKindOf(Stereotype)).name
4 unRelated = model.ownedElement.select(lambda cl:
5 cl.oclIsKindOf(Class) and
6 cl.stereotype.select(lambda st:
7 st.oclIsKindOf(Stereotype) and
8 st.name not in ucStereotypes))

Of course, more complexity can be added to the previous verification in order to
gather more details on the relation between each class and different use cases. One
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should note that one class can belong to several use cases or the reverse, i.e. one use
case can be contained by one class, even though this situation occurs less frequently.

Finally, a query can be used to ensure that a design can be implemented in a given
target platform. In our example, we check that the design is still implementable onto
the target platform after a refactoring has been performed. In practice, this means that
all the class methods should still have at least one implementation solution provided
by the target platform.

1 implementable = model.getAllParts().forAll(lambda actDiag:
2 actDiag.oclIsKindOf(ActivityGraph) and
3 actDiag.ownedElement.forAll(lambda tran:
4 tran.oclIsKindOf(Transition) and
5 tran.source.oclIsKindOf(ActivityState) and
6 belongsTo(tran.source.name, platformOperations)))

The example interrogates all activity diagrams inside a model, and checks that
each state is expressed using a platform operation provided in the platformOpe-
rations list (line 6).

Software Metrics

Software metrics are an application of model queries. We can extract design and
implementation metrics from a software model by applying an aggregation operator
over a set of queries of a model. Let us take as an example the total number of classes
in a model. This simple metric may give us a rough estimation of the effort needed to
implement the model. Here, we begin by selecting all the classes in the model, and
use the size operator to count the number of classes.

1 NOC=model.getAllParts().select(lambda c:
2 c.oclIsKindOf(Class)).size()

Another interesting metric is the number of operations per class. The following
query creates a collection that contains an integer with the number of operations for
each class.

1 MpC = model.getAllParts().select(
2 lambda c: c.oclIsKindOf(Class)).collect(
3 lambda c: c.feature.select(lambda f:
4 f.oclIsKindOf(Operation)).size())

In this query we first find all classes in the model. Then we use the collect op-
erator to calculate the number of operations in each class. Once we have created the
final collection we can calculate the average and maximum number of methods per
class in the model. We can also use the stats Python module to print a histogram of
the metric.

1 AverageNumberOfMethods = MpC.sum() / MpC.size()
2 MaximumMethodsPerClass = max(MpC)
3 import stats
4 print stats.histogram(MpC)
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The histogram may reveal that some classes are too large. Probably these classes
represent several abstractions and can be refactored into two or more simpler classes.
The following query returns the names of the classes in the model that have the most
number of operations.

1 model.getAllParts().select(lambda c:
2 c.oclIsKindOf(Class) and c.feature.select(lambda f:
3 f.oclIsKindOf(Operation)).size() >= max(MpC) * 0.9).name

Target Platform Constraints

Another important type of query is to check if a model fulfills a given constraint
of the target platform. These constraints can be dictated by the implementation pro-
gramming language, the target operating system, or, in our case, by the hardware
platform.

For instance, in our design flow one would like to avoid using the multiple imple-
mentation inheritance (especially if we are talking about mapping the specification
into hardware). For this we have to identify (see the script below) the presence of the
classes that use multiple inheritance in our design.

1 model.getAllParts().select( lambda c:
2 c.oclIsKindOf(Class) and
3 not c.isAbstract and
4 c.generalization.size()>1
5 ).name

In this script we select from all classes in the model (lines 1–2) those represent-
ing a concrete class to be implemented (line 3) and have more than one superclass
(line 4). Then we collect the names of the selected classes (line 5).

Design Guidelines

Another application for queries is to check whether or not a model follows some
design guidelines. Some tools such as Together Control Center from TogetherSoft
provide an auditing feature that reveals common design and programming mistakes.
ArgoUML [364] provides a similar mechanism with its critics system. Argo critics
give advice in real time, while the designer manipulates the model diagrams.

As an example, the following method returns true if a class has an invariant.
The invariant may be defined in the given class (line 2) or in any of its super-
classes (line 4).

1 def hasInvariant(c):
2 if c.constraint.exists(lambda e: e.name=="invariant"):
3 return true
4 else:
5 return c.generalization.exists(lambda g:
6 hasInvariant(g.parent))

Given the function hasInvariant the next query returns the name of the classes
that do not have an invariant defined.

1 model.getAllParts().select(lambda c: c.oclIsKindOf(Class)
2 and not hasInvariant(c)).name
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2.4 Model Transformations

Model transformations can be categorized based on the scope of their effect on a
given model. They can be applied to modify internal parts (elements) of a model
(update transformation) or to create a new model expressed in the same language or
in a different language (mapping transformation). Usually, a model transformation
requires a script with a higher complexity than a query. In fact, a transformation is
composed of one or many queries that select from the model the required elements
satisfying a given condition or being in a certain relation, and then one or many
create, edit, or delete operations performed over the target model elements.

A mapping transformation translates each element from a source model into zero,
one, or more elements of a target model. The source and target models may be de-
scribed in the same or in different modeling languages. In a mapping transformation,
the original model is not altered. Recently, Akehurst and Kent proposed to use rela-
tions to define these mappings [11]. Also, the OMG is going to release a new standard
for model transformations. We consider that mapping transformations is more suited
to describing transformations where a whole model is translated from one language
to another.

In contrast, an update transformation modifies a model in place: it adds, deletes,
and updates elements in one model. The source and target models are the same and
the effects of the transformation are visible while performing the transformation.
There can be two possible ways in which an update transformation can be performed:
to modify an already existing element or to create a new element of the same type
followed by the deletion of the initial element. The update transformation is obvi-
ously a more efficient approach when only a small subset of the source model will
be changed by the transformation. A trivial example is the addition of a new UML
class to a package. This involves the creation of a new model element, and modifying
the bidirectional association between the class and the package.

Model Refinement and Refactoring

Model refinement and refactoring is a new area of research. We have experience in
source code refactorings and refinements, but in modeling it is quite a new concept
– probably because a de facto standard for expressing transformations has not yet
been developed. Different definitions of a refactoring have been given in the liter-
ature. Fowler says that “The process of changing a software system in such a way
that it does not alter the external behavior of the code, yet improves its internal
structure” [131], while Beck considers that a refactoring is “a change to the sys-
tem that leaves its behavior unchanged, but enhances some non-functional quality—
simplicity, flexibility, understandability, . . . ” [34]. A more comprehensive discussion
on model refactoring is given on p. 199 of this book.

We consider that model refactoring is a more complex case of model transfor-
mation where the update transformation is applied on the entire model. We define
a refactoring as a behavior-preserving transformation in a model with the objective
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Fig. 1. Attribute encapsulation

of improving the design described in it. In our work, we have used a rule-based ap-
proach [351] provided by the SMW tool. It allows us to mix OCL-style queries and
preconditions with imperative statements that modify the model. Part of a script for
a standard example, encapsulating an attribute of a class, is shown below. The script
modifies a public attribute to become private, and adds a suitable getX() method
instead. The effects of the refactoring are presented in Fig. 1.

1 transformation EncapsulateAttribute:
2 rule AddGetter(a: Attribute):
3 when: a.visibility==VisibilityKind.vk_public and
4 not a.owner.feature.select(lambda f:
5 f.name=="get"+string.capitalize(a.name))
6 do: a.owner.feature.insert(
7 Operation(
8 name="get"+string.capitalize(a.name),
9 visibility=VisibilityKind.vk_public,

10 parameter=[
11 Parameter(name="result",type=a.type,
12 kind=ParameterDirectionKind.pdk_return) ],
13 specification="return "+a.name)
14 )
15 rule Privatize(a: Attribute):
16 when: a.visibility==VisibilityKind.vk_public and
17 not AddGetter.guard([a]) and not AddSetter.guard([a])
18 do: a.visibility=VisibilityKind.vk_private

3 A Design Methodology for Protocol Processing Applications

Protocol processing is a sub-domain of digital telecom applications that deals with
switching, analysis, buffering, and transformation of units of information used in
communication protocols. Among the requirements of protocol processing appli-
cations we can enumerate high throughput, physically constrained implementation
platforms, and flexibility/upgradeability of functionality. In order to meet all these
requirements, these kind of applications are usually implemented on dedicated con-
figurable hardware platforms (e.g. network processors). One of the challenges in
designing such applications is how one can choose/configure the implementation
platform to better implement the applications, starting from the initial requirements
specification of the application.

As mentioned earlier, we see MDA as an integration of languages, models, tools,
methods, processes, and frameworks that allow us to specify and analyze systems
in a consistent manner, starting from the requirement specification and down to the
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Fig. 2. Design methodology for protocol processing applications

physical implementation. In order to provide a systematic approach to system design,
a methodology that guides the designer and provides the necessary tool support has to
be defined. Our design methodology (Fig. 2) starts with the functional specification
of the application, and when the necessary level of detail is reached, we map the
specification onto the target platform. This is exactly what MDA proposes: to use
several models (e.g. Platform Independent Model (PIM), Platform Specific Model
(PSM), etc.) to describe the system at different layers of realization.

As mentioned in the introduction, MDA was intended for software development.
In the case of embedded systems, a more liberal approach has to be adopted, since
embedded systems are a combination of hardware and software providing some func-
tionality to the environment. In our case study we specified and implemented an
IPv6 router targeted on a protocol processing platform. In this situation, the imple-
mentation platform is a programmable processor which, by its nature, not only is a
hardware platform but is also configurable.

Therefore, in talking about both hardware and software we are facing a concep-
tual gap between the two. To alleviate this problem, we used what we call domain
information to narrow the gap between the functional specification and the platform,
and at the same time, to provide basic support for reuse of platform components.
Moreover, in our approach we wanted to be able to implement the functional specifi-
cation of the application on an implementation platform chosen only after the func-
tional specification process was performed. Also the methodology was intended to
enable us to configure a target (hardware) platform while starting from the applica-
tion specification, in contrast to traditional approaches where the application has to
be mapped onto a fixed given platform. In the following we briefly present the main
phases of the design methodology.
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3.1 Functional Specification of the Application

In the area of embedded systems there are mainly two categories of approaches pro-
moting concepts and artifacts that can be viewed as common modeling languages.
The first category is based on the use of the object-oriented paradigm, which was the
starting point of UML. The second one is based on the data flow paradigm that pro-
moted data flow diagrams (DFDs) as its main modeling language. Both models offer
important views, but each of them focuses on certain aspects of the system under
consideration. We presented in [429] a combined approach where both paradigms are
used to develop embedded software. The method is tool supported, allowing the us-
age of well-defined models of the system and in order to provide automation, model
transformations have been specified between the data-flow and UML views of the
system. An argument for the necessity of integrating both views was given in [122].

Below, we briefly go through the main steps of the functional specification phase.
We extract the functional requirements of the application into a functional specifica-
tion performed in a domain-independent and platform-independent manner. At this
point no details about the target domain and platform are being taken into consider-
ation.

The design flow (Fig. 3) is composed of a number of steps that represent different
views of the system. At each step, new information is added in the specification, until
the necessary level of detail is reached. Briefly, the steps in the figure are:

a. Extract the application requirements.
b. Extract functionality of the system into a Use Case Diagram.
c. Specify the textual description for each use case.
d. Obtain the Initial Object Diagram of the system from the Use Case Diagram.
e. Refactor the Initial Object Diagram based on the use cases’ textual descrip-

tion by grouping, splitting, or discarding objects.
f. Transform the Initial Object Diagram into a Data Flow Diagram and build

the Data Dictionary of the system.
g. Specify the internal behavior of the DataTransformations using Activity Di-

agrams.
h. Transform the Data Flow Diagram into a Class Diagram.
i. Transform the Data Flow Diagram into a DFD-like Object Diagram.

Between steps, the designer changes the view of the system several times and,
consequently, the modeling paradigm. To provide automation in going from one step
to another model transformations have been specified and implemented. We show
later (Section 4) in this chapter how we have implemented and used these trans-
formations. A more detailed view of the design flow and how we automated these
transformations between different views of the system can be found in [428]. In this
chapter we only intend to analyze the methods used in the approach, and based on
this analysis, to identify the general requirements of a model-driven development
process.
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Fig. 3. Available options during the system generation process

3.2 From General Specifications to Specific Implementations

One of our aims is to keep our design methodology applicable to a wider range of
embedded systems. Once the functional specification of the application has been per-
formed, different target platforms can be chosen for implementation. The approach
is in consensus with the MDA philosophy, where the PIM can be mapped onto a
PSM to provide specific implementations of a given specification.

The MDA standard does not mention either a concrete way in which a PIM is
transformed into a PSM, or how tool support should be provided for this transfor-
mation. Clearly additional information of the target platform is required and for this
a Platform (description) Model (PM) is proposed. Still, to be able to perform the
PIM-to-PSM transformation, a set of mappings between the PIM and PM is needed.
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Moreover, as we mentioned in the beginning of this section, we wanted to retain the
possibility of implementing the PIM not only in software, but also in hardware. And
in the latter case, the conceptual gap between the PIM and PM deepens considerably.

To be able to provide a set of mappings between the PIM and PM, we intend to
provide a general enough approach to be used for several applications (in the same
area). We are aware that there is no such “one-size-fits-all” solution to be applied
to all systems, but for a particular class of applications we consider that such an
approach can be provided by analyzing and (re)using the experience of previous
applications in the same domain.

Using Domain Information

To create a set of mappings between the PIM and PM, we use domain information
gathered from existing applications in the same domain of applications (i.e. proto-
col processing). By analyzing and modeling the domain knowledge, a set of generic
reusable components can be extracted by identifying general abstractions and simi-
larities of a set of applications. We focus on the operational features of the system
and extract a common set of basic domain operations that have to be supported/im-
plemented by the target platform. We use domain operations as a bridge between the
functional specification and the target platform. Basically, on one side we express the
functional specification of the application using domain operations, and on the other
side we identify how the domain operations map to the resources of the platform
(hardware, software, or both).

From Functional Specification to Platform Implementation

We combine the result of the functional specification of the application with the
domain-based knowledge to provide component reuse and fast identification of re-
quired computational resources. During this phase we transform the functional spec-
ification of the application into a domain-dependent but still platform-independent
specification (phase two of Fig. 2). Seen in the context of an MDA approach, the
PIM-to-PSM transformation is presented in Fig. 4.

The diagrams in the final steps of the functional specification (Fig. 3) represent
possible outputs of the specification process and can be seen as the PIM of the ap-
proach. Although not evident due to typographical reasons, the behavior of the object
is specified using UML activity graphs, where the activity states of the graphs are re-
fined until they can be expressed with domain operations. At the same time, for each
domain operation we identify how it is supported/implemented by the resource(s) of
the target platform (i.e. PM), thus allowing us to identify what platform resources are
required to implement the application. The approach can be used to implement the
application both on fixed-configuration platforms, as well as on configurable ones.
Keeping the application specification independent of the target platform allows de-
signers to take implementation-specific decisions later in the design flow, thus ad-
dressing an important issue of the hardware/software co-design domain.
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Fig. 4. Using domain information for the PIM-to-PSM transformation

The main benefit of the approach is that it does not restrict us to only one imple-
mentation platform. Although specified using domain information, the PIM is still
completely independent of the target platform. Consequently, several implementa-
tion platforms can be addressed, where the PM can be any kind of implementation
platform starting from high-level programming language applications (e.g. C, Java,
etc.) to hardware circuits. For instance, to provide an executable model of the func-
tional specification, it is enough to choose the C language as the PM. By specifying
how each domain operation is implemented in C, we provide a mapping between the
PIM and PM. Of course, identifying how domain operations are implemented by the
platform is not always a trivial task. But once the mapping is created, it can be reused
for several application specifications (in the same application domain). Another ad-
vantage of this approach is that, with the precondition that the behavior of the PIM
is expressed with domain operations and that mappings between the domain opera-
tions have been built, the transformation of the PIM into the PSM remains the same.
This fact enables us to reuse the transformation for trying out several applications
implemented on different implementation platforms.

Modeling the Implementation Platform

In one of our case studies (IPv6 router specification), we chose to target the PIM
in the previous subsection on the TACO protocol processing platform. TACO is
a framework built around the TACO processor, whose resources are implemented
and simulated using SystemC [336] (an object-oriented extension of C++ for hard-
ware specification), their physical parameters (like area and power use) are estimated
in Matlab, and the processor configurations are synthesized using VHDL. The re-
sources of the processor are organized in a library of components, the TACO Com-
ponent Library, from which the designer can create, at design time, processor config-
urations by selecting those resources needed to implement a given application. The
SystemC, Matlab, and VHDL models coexist, enabling one to estimate and simulate
processor configurations at system level before going to hardware implementation by
selecting resources of the processor. When these configurations are validated with re-



320 Marcus Alanen, Johan Lilius, Ivan Porres, and Dragos Truscan

spect to the requirements, VHDL implementations of the processor can be obtained
to synthesize the processor in hardware.

In our case, the PM models the TACO Component Library in the form of a UML
class diagram. The elements of this class diagram are customized based on a UML
profile definition for TACO [427]. The profile models two kinds of information:
an architectural description of the processor (i.e. type of resources and their rela-
tionships) and library-related information (physical estimations for each resource,
as well as SystemC and VHDL corresponding implementations). More additional
constraints associated with the profile elements have been specified using OCL-like
constructs, to enforce additional architectural properties not enforced by the graphi-
cal models. Since the TACO profile is not in the scope of this chapter we avoid going
into more detail.

We only mention that the functionality of the processor is implemented by its
processing units and their computation is triggered by the processor program code.
In Fig. 5 left, we present one of the processing units of the processor, modeled
as a �TACOFu� class. Each processing unit, and consequently each class rep-
resenting it, contains information about what domain operations it implements (e.g.
__do_add()) and how each operation is implemented in practice by the platform.
In the context of TACO, a domain operation is implemented by a sequence of TACO
machine instructions (Fig. 5-right).

Fig. 5. Domain operations specified in the COUNTER class (left). A domain operation is a
sequence of machine instructions (right)

It is worth mentioning that when developing applications for TACO processors,
the program code is created and the processor is configured at the same time (by
identifying what resources are needed to run that code). Thus, by performing the
PIM-to-PSM transformation [426], we obtain simultaneously both the application
code and the corresponding hardware configuration.

The resulting diagrams of the process in Fig. 3 model the behavior of the sys-
tem using UML activity graphs, whose states are further refined into other states
expressed with domain operations. On the TACO processor side, each domain oper-
ation is implemented (see Fig. 5) by a resource of the processor (i.e. processing unit)
and the corresponding processor code to exploit that resource.
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We again mention that having domain information “embedded” with both the
PIM and PM, the PIM-to-PSM transformation could be fully automated. Basically
the transformation selects all processor resources needed to implement the activity
states in PIM to obtain the processor configuration, and each state in its turn is trans-
formed into a sequence of processor instructions that will constitute the program
code. Due to lack of space, we will not go into detail. We only mention that we
applied techniques and concepts similar to those discussed in Sect. 2.2.

This enabled us to check constraints of the platform imposed by the requirements
of the application. For instance, often used constraints of embedded systems are the
area occupied, the power consumption of the system, or the latency or the throughput
of communication channels. In the case of TACO, all resources have this information
available in the PM and, as a consequence of the PIM-to-PSM transformation, in the
PSM (see area and pc tagged values in Fig. 5-left). Therefore, using a script that
computes the total area and power consumption of the processor, we can ensure that
the PSM obtained complies with the initial physical constraints of the application,
before going to the hardware synthesis process.

3.3 System Generation

System generation is the translation of a PSM into source code that can be compiled
into the “final” system. Here the word final can be seen in relative terms. We can
see it as the final system the PSM obtained during the PIM-to-PSM transformation
in case it is the end-product of our implementation, or, as an alternative, to generate
from the PSM new models or code that can be further transformed or compiled into
other models or implementations, respectively. In fact, according to the MDA speci-
fication, any PSM can be regarded as a new PIM that can be, in its turn, transformed
into a new PSM.

For instance, during our case study, once the PSM (i.e the TACO processor con-
figuration and the corresponding processor code) was obtained, we were able to suc-
cessively generate automatically several perspectives of the system depending on the
design needs (Fig. 6). The approach could be seen as similar to code generation or
as transforming the PSM into other models.

Fig. 6. Possible options for system generation
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For instance, from the PSM we can directly generate the SystemC model of the
processor (i.e. configuration) to simulate the entire functionality of the system, be-
fore going to the hardware design process. This can be done either at the metamodel
level, where we map elements of the PSM (TACO processor) into a model of the
SystemC language using, say, a SystemC UML profile, or just simply generating
the SystemC code files. In parallel, the TACO code (automatically obtained from
the configuration) is input to the TACO compiler that performs necessary optimiza-
tions and other compiler-specific tasks, and the processor is simulated. In its turn,
the SystemC model/code of the processor can be further processed (transformed)
into C and/or VHDL code/models, this being one of the current approaches in using
SystemC for hardware designs.

In a similar way, and as a consequence of how the TACO Component Library is
built, we obtained the VHDL model of the processor that serves as input for hardware
synthesis tools to implement the processor in hardware. To connect our design flow
with other design tools (e.g. TACO design tool [444]), where the design space explo-
ration is performed, the obtained processor configurations can be exported in XML
format. We mention that, due to the way the PSM is created and with the benefit of
the scripting facilities presented in the previous section, all these transformations are
fully automated.

4 Automating Model Transformations in the Methodology

In the methodology presented in the previous section, a number of models have been
used to specify an IPv6 router at different levels of detail during the development
process. Also in Sect. 2.2 we defined a set of scripts that operate over well-defined
models allowing model creation and manipulation. In this section, we exemplify the
way we used scripts to automate the model transformations between the steps of our
design methodology.

In the functional specification of the application presented in Sect. 1.2, we apply
a number of such transformations. One example is the transformation (step d. of
Figure 3) of a UML use case diagram (Fig. 7 - top) into a UML object diagram (Fig.
7 - bottom), remaining within the UML formalism. Basically, the algorithm consists
of transforming each actor element in the first model into an actor element in the
second model.

1 ucActors=umlModel1.ownedElement.select(lambda x: x.oclIsKindOf(Actor))
2 for act in ucActors:
3 p=umlModel2.ownedElement.insert(UML14.Actor(name=act.name))

Then based on the approach described in [123] each use case is split into three
different objects (interface, control, data) and the corresponding classes are created.

4 useCases=umlModel1.ownedElement.select(lambda x: x.oclIsKindOf(UseCase))
5 for el in useCases:
6 classInterface=umlModel2.ownedElement.insert(UML14.Class(name=el.name,
7 stereotype.append(Stereotype(name="interface"))))
8 classControl=umlModel2.ownedElement.insert(UML14.Class(name=el.name,
9 stereotype.append(Stereotype(name="control"))))
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10 classData=umlModel2.ownedElement.insert(UML14.Class(name=el.name,
11 stereotype.append(Stereotype(name="data"))))

In this transformation we use an approach where interface objects are the only
objects communicating with the external environment, while the communication
among interface and data objects is always done through control objects. Thus, we
draw by default associations between interface and control objects, and also between
control and data objects.

12 assoc1=umlModel2.addAssociation(classInterface, classControl)
13 assoc2=umlModel2.addAssociation(classControl, classData)

Finally, for each association actor use case in the initial model, an association is
drawn between the corresponding actor and the interface object corresponding to the
initial use case.

14 ucAssocs=ucd.ownedElement.select(lambda x: x.oclIsKindOf(UML14.Association))
15 ucAssocs.select(lambda assoc: ucd.ownedElement.select(lambda el1:
16 (el1.oclIsKindOf(Actor) or el1.oclIsKindOf(UseCase)) and
17 assoc.connection[0] in el1.association and
18 ucd.ownedElement.select(lambda el2:
19 (el2.oclIsKindOf(Actor) or el2.oclIsKindOf(UseCase)) and
20 assoc.connection[1] in el2.association and
21 model.addAssociation(el1,el2,assoc.name))))

One should note that, although OCL is specified in the standard to be a declar-
ative language, the Python lambda functions allow us to use OCL-like idioms in an
imperative manner. This enabled us to mix queries with model manipulations, mak-
ing the scripts shorter and more effective.

We mention that the object diagram obtained in Fig. 7 bottom does not repre-
sent the exact output of the transformation. As mentioned in step d. of our functional
specification design flow, a refactoring process is performed on the object diagram
resulting from the transformation. The refactoring is done manually (and based on
the designer’s experience) and consists of giving a direction to the associations be-
tween objects and also deciding which objects are grouped and/or discarded. For
instance, in Fig. 7-bottom, data objects {2.d}, {3.d}, {4.d}, {5.d}, and {6.d} rep-
resent the same functionality of the system, so they can be grouped into one single
object {5.d}, and the others are discarded.

A second example of mapping between two different models, this time also
changing the formalism/language, is the transformation that supports the creation of
an object diagram in the UML model, starting from a data flow diagram in the DFD
model (Fig. 3, step i.). The transformation is applied to a data flow diagram (Fig. 8).
The four modeling concepts that are present in a DFD are: data flows (movement of
data in the system), data stores (repositories for data that is not moving), processes
(transformation of incoming data flows into outgoing data flows), and external enti-
ties (sources or destinations outside the specified system boundary). The end-product
of the transformation is the diagram in Fig. 9. The diagram proved to be suited for
prototyping purposes and functional testing of the specification. Additionally, it is
already a good candidate for being mapped onto a hardware-based platform, because
its granularity is at a relatively low level of detail. The model transformation starts
by gathering model information using a number of basic queries.
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Fig. 7. Transformation of a use case diagram into an object diagram

1 dataFlows=dfdModel.ownedElement.select(lambda x:
2 x.oclIsKindOf(DataFlow) and not x.oclIsKindOf(DataStore))
3 externalEntities=topDfd.ownedElement.select(lambda x:
4 x.oclIsKindOf(ExternalEntity))
5 dataStores=topDfd.ownedElement.select(lambda x:
6 x.oclIsKindOf(DataStore))
7 dataTransformations=topDfd.ownedElement.select(lambda x:
8 x.oclIsKindOf(DataTransformation))

Next, each DataTransformation and DataStore element in the DFD model is
transformed into a class in the UML model.

9 dfdModel.ownedElement.select(lambda ts:
10 (ts.oclIsKindOf(DataTransformation) or
11 ts.oclIsKindOf(DataStore)) and
12 classDiag.addClass(name=ts.name))
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Fig. 8. Data flow diagram of the router

Then we add associations among classes. An association among two classes is
obtained from the data flow among the two Data Transformations or Data Stores
corresponding to those classes.

13 dfdModel.ownedElement.select(lambda f:
14 f.oclIsKindOf(DataFlow) and
15 dfdModel.ownedElement.select(lambda src:
16 src.oclIsKindOf(DataTransformation) and
17 f.connection[0] in src.association and
18 dfdModel.ownedElement.select(lambda dst:
19 dst.oclIsKindOf(DataTransformation) and
20 f.connection[1] in dst.association and
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Fig. 9. Object diagram of the router

21 addAssoc(src,dst,"send"+string.split(f.name,’+’)[0]))))

The definition of the function addAssoc() is given below. Its functionality is to
add an association with a given name corresponding to a source and a destination
element in the source model. To do this, the function queries the target model to
select corresponding elements and adds the new association to the target model.

1 def addAssoc(source,destination,theName):
2 umlModel.ownedElement.select(lambda src:
3 src.oclIsKindOf(Class) and
4 src.name==source.name and
5 umlModel.ownedElement.select(lambda dest:
6 dest.oclIsKindOf(Class) and
7 dest.name==destination.name and
8 classDiag.addAssociation(src, dest, name=theName+"()")))
9 return 1
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5 Conclusions

There are many reasons to encourage the use of models and the concept of everything
is a model in system development. Models are described at the right level of abstrac-
tion and precision. Source code is too concrete, natural language is too ambiguous.
New languages can easily be explored because of the common structure inherent in
all models and metamodels, as given by a common meta-metamodel. This implies
that it is simpler to construct a tool to extract semantic information about a design
from a model of any language.

In this chapter we have presented a model-driven development method for pro-
tocol processing devices and shown how some of the steps in this process can be
automated using transformation scripts. Some of the scripts presented are general
enough so that they can be reused for similar, or with the necessary adaptation to
different types of, applications.

This specific development method is not a general approach valid for any kind
of embedded system. It is only intended to work in a particular class of systems that
focus on how data is distributed in the system but not how it is stored (e.g. protocol
processing applications). However, we think that that is exactly where model-driven
methodologies are more valuable. The more specific our application domain, the
more difficult it is to find trained developers who are familiar with the application
domain and, therefore, the higher profit can be obtained from using a well-defined
process and advanced tools to guide and help the developers. In any case, we believe
that most of the ideas of the approach can be adapted and used in other application
domains and for other implementation platforms.

We also showed that the idea behind MDA can be extended beyond the margins
of software development, and can also be applied to hardware specifications. Still,
because of the gap between software and hardware specifications, the PIM and PSM
respectively, we proposed the use of additional information (i.e. domain information)
to bridge the gap between the two. Using domain information during the platform
configuration process provided basic support for reuse, and in particular proved to
be helpful in platforms built around a library of components. In our opinion the idea
brings benefits especially for the development of new products belonging to the same
product families.

Furthermore, we have shown what we consider is the best benefit we can achieve
from the MDA: we were able to script and automate our development process in the
context of a case study of an IPv6 router using our TACO protocol processing archi-
tecture. Tools for model transformation are still in their infancy. However, the need
is clearly evident, and related work in this field is ongoing. The Generative Model
Transformer (GMT) [145] is an open source initiative that wants to fulfill the promise
of MDA, and encourage exploration and research related to MDA. GMT sounds very
promising, as a joint tool effort could be the missing link between everyday modeling
and the software development community.
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Summary. Model-driven development (MDD) tools and processes are increasingly used
to develop component middleware and applications for distributed real-time and embedded
(DRE) systems, which have stringent requirements for timeliness, correctness, scalability, and
maintainability. MDD techniques help developers of DRE systems express application func-
tionality and quality of service (QoS) requirements at a higher level of abstraction than is
possible using third-generation programming languages, such as Visual Basic, Java, C++, or
C#. The state-of-the-art in MDD for large-scale DRE systems is still maturing, however, and
no single MDD environment provides the capabilities needed for effective development of
large-scale DRE systems.

This chapter presents three contributions to the study of integrated MDD development and
model checking for large-scale DRE systems. First, we describe how our CoSMIC and Ca-
dena MDD toolsuites have been combined to provide an integrated environment that enhances
the development and validation of DRE systems. Second, we discuss how we addressed key
research issues associated with implementing MDD algorithms for maintaining semantics-
preserving transfer of model data between the CoSMIC and Cadena MDD tools. Third, we
discuss how we overcame technical difficulties encountered when applying the integrated
COSMIC and Cadena for a representative DRE system. Our results show that interoperation
between different MDD tools is achievable with the proper choice of communication format,
semantics, and the development of a reliable graph diff-merge algorithm. This interoperation
helps identify the workflow and capabilities needed for next-generation DRE development
environments.
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1 Introduction

Emerging Trends.

Developers of mission-critical distributed real-time and embedded (DRE) systems
face a number of challenges, including (1) alleviating complexity – both inherent
and accidental, (2) reducing total ownership costs – both initial and recurring costs,
and (3) ensuring correct end-to-end system behavior – both functional and quality of
service (QoS) requirements. Promising technologies that address various aspects of
these challenges are QoS-enabled component middleware and model-driven devel-
opment (MDD) with model checking capabilities, as we discuss below.

QoS-enabled component middleware. A key enabler in recent successes [366, 391]
with DRE systems has been middleware [375], which is software that provides
reusable services that coordinate how application components are composed and in-
teroperate. QoS-enabled component middleware technologies enhance conventional
middleware by offering (1) explicit support for configuring of policies and mecha-
nisms for systemic aspects, such as real-time QoS and security, and (2) a program-
ming model that decouples these systemic aspects from application functionality.
These capabilities help address complexity, cost, and correctness by making the
QoS-enabled component middleware responsible for (pre)allocating CPU resources,
reserving network bandwidth/connections, and monitoring/enforcing the proper use
of system resources at run-time to meet DRE system QoS requirements.

Our work on QoS-enabled component middleware has focused on the Com-
ponent-Integrated ACE ORB (CIAO) [454], which is open-source (www.dre.
vanderbilt.edu/CIAO) middleware that enhances The ACE ORB (TAO) [378]
to provide Real-time CORBA [314] enhancements to the CORBA Component Model
(CCM) [311]. CIAO’s CCM components are interconnected via the following types
of standard ports:

• Facets, which define an interface that accepts point-to-point method invocations
from other components and receptacles, which indicate a dependency on point-
to-point method interfaces provided by other components. A receptacle is con-
nected to a facet to provide synchronous remote method invocation communica-
tion between a pair of components.

• Event sources and sinks, which indicate a willingness to exchange typed mes-
sages with one or more components. Event sources can be connected to event
sinks for asynchronous point-to-multipoint message-passing communication be-
tween components.

CIAO abstracts component QoS requirements into metadata that can be specified in
a CCM component assembly after a component has been implemented [453]. De-
coupling the specification of QoS requirements from component implementations
greatly simplifies the configuration and evaluation of DRE systems with multiple
QoS requirements [452].
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Model-driven development (MDD). MDD software processes and tools are a promis-
ing approach for addressing the challenges of developing, evolving and validating
large-scale DRE system maintenance and modification [309, 246, 163]. The MDD
paradigm systematically applies domain-specific modeling languages (DSMLs) to
direct the understanding, design, construction, deployment, and operation of com-
puting systems, ranging from small-scale real-time and embedded systems to large-
scale business applications distributed across an enterprise. MDD tools address com-
plexity, cost, and correctness by helping to automate (1) analysis and verification of
characteristics of system behavior, such as predictability, safety, and security, and
(2) synthesis of code that is customized for DRE system properties, such as isolation
levels of a transaction, recovery strategies to handle various run-time failures, and
authentication and authorization strategies modeled at higher levels of abstraction.

Our work on MDD technologies has focused on CoSMIC [153] and Cadena
[198]:

• CoSMIC (www.dre.vanderbilt.edu/cosmic) is an open source MDD
toolsuite that address key lifecycle development challenges of DRE middleware
and applications, such as modeling of DRE system deployment and configuration
capabilities [25] and their QoS requirements [260]. The CoSMIC MDD tools
enable developers of DRE systems to specify, develop, compose, and integrate
application and middleware software.

• Cadena (cadena.projects.cis.ksu.edu) is an MDD toolsuite that sup-
ports various aspects of component-based DRE systems, including definition of
component interfaces, deployment and configuration capabilities, and configura-
tion of underlying middleware services. In contrast to CoSMIC (which focuses
on providing various forms of support for QoS management and configuration
of particular component middleware frameworks, such as CIAO [454]), Cadena
focuses on providing various forms of visualization and model-level analysis of
system configurations, including architectural slicing, simulation, behaviors [84]
and integration with multiple CCM implementations including CIAO (C++) and
OpenCCM (Java).

Gaps in MDD Technologies for DRE Systems

The QoS-enabled component middleware and MDD toolsuites described above have
largely evolved independently in separate R&D communities. Due to the complexity
and mission-criticality of large-scale DRE systems, however, there is a need to com-
bine (1) lightweight specification and analysis capabilities that capture functional
and QoS specifications for component-based DRE systems with (2) capabilities for
QoS management and middleware configuration to achieve an integrated collection
of tools that can verify DRE system behavior early in the development lifecycle and
enhance reliability. Such an integrated approach can help increase productivity and
reduce the risk of mistakes caused by DRE system developers, who would otherwise
need to port models from MDD tools manually into representations used by other
tools every time a model changes.
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This chapter is organized into the following three thrusts that describe our expe-
rience developing and evaluating an integrated MDD and analysis environment for
QoS-enabled component middleware and DRE systems:
• Section 2 describes how CoSMIC has been combined with Cadena to provide

an integrated MDD environment that accelerates the development and validation
of DRE systems by addressing key production stages and providing powerful
analysis capabilities for tracking errors early in the development lifecycle. This
integrated environment foreshadows the types of capabilities needed in future
DRE development environments to improve the creation and validation of DRE
systems.

• Section 3 discusses R&D issues associated with implementing algorithms for
integrating MDD tools for DRE systems, including coping with export–import
cycles, storing and transferring supersets and subsets of captured information,
merging and preserving information, and addressing future extensibility of the
integration.

• Section 4 presents a case study of a robot assembly3 DRE system that illus-
trates the technical difficulties encountered when integrating CoSMIC and Ca-
dena tools, highlighting how the choice of an effective communication protocol,
data interchange format, and a framework for semantic translators helped enable
smoother tool integration.

This paper shows how our integrated CoSMIC and Cadena MDD technologies
enable developers to specify DRE system requirements at higher levels of abstraction
than those provided by low-level mechanisms, such as conventional third-generation
programming languages, operating systems, and middleware platforms. Our case
study shows how these higher-level specifications express constraints that are trans-
formed into running lower-level code that preserves and enforces the semantics of the
specifications. These “correct by construction” MDD techniques are in contrast to
the “construct by correction” techniques commonly used today by post-construction
tools, such as compilers, source-level debuggers, and XML descriptor validators.

2 An Overview of the CoSMIC and Cadena MDD Environments

This section presents an overview of the CoSMIC and Cadena MDD toolsuites, high-
lighting the capabilities of each tool in the DRE system case study presented in Sec-
tion 4.

2.1 Overview of CoSMIC

The Component Synthesis using Model Integrated Computing (CoSMIC) [153] tool-
suite is an integrated collection of MDD tools that address the key lifecycle chal-
lenges of middleware and applications in DRE systems. Figure 1 illustrates CoS-
MIC’s MDD tools that address deployment and configuration lifecycle challenges of
3 “Assembly” is used here as in “assembly line,” which is a different use of the term than the

concept of a “CCM component assembly" mentioned above.
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Fig. 1. The CoSMIC MDD toolsuite

DRE systems. CoSMIC supports modeling of DRE system deployment and config-
uration capabilities, their QoS requirements, and QoS adaptation policies used for
DRE system QoS management. Its MDD tools are implemented via domain-specific
modeling languages (DSMLs) developed using the Generic Modeling Environment
(GME) [269], which is a configurable toolkit for creating domain-specific modeling
and program synthesis environments. CoSMIC uses GME to define the modeling
paradigms4 for each stage of its tool chain. CoSMIC ensures that the rules of con-
struction – and the models constructed according to these rules – can evolve together
over time. Each CoSMIC tool synthesizes XML-based metadata that is used by the
CIAO QoS-enabled component middleware [454] described in Section 1. In particu-
lar, CoSMIC supports CIAO’s implementation of the OMG’s Deployment and Con-
figuration (D&C) specification [316] and provides the following capabilities shown
in Figure 1:

• Specification and implementation, which enables application functionality speci-
fication, partitioning, and implementation as components. CoSMIC provides the
Interface Definition Modeling Language (IDML), which is a DSML that can be

4 A modeling paradigm defines the syntax and semantics of a DSML [246].
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used to specify component definitions. IDML also provides an importer that can
transform preexisting IDL definitions into modeling elements.

• Component assembly and packaging, which can bundle a suite of software binary
modules and metadata representing application components. CoSMIC provides
the Platform Independent Component Modeling Language (PICML) [25], which
is a DSML that models the connections between various components to form
assemblies. PICML enables these assemblies to be composed into packages that
can be shipped to target nodes.

• Configuration, which allows packages to be customized with the appropriate pa-
rameters that satisfy the functional and systemic requirements of applications.
CoSMIC provides the Options Configuration Modeling Language (OCML) [260]
to model the middleware configuration rules, which are then synthesized into a
rules engine and graphical environment that application developers use to con-
figure the middleware.

• Planning, which makes appropriate deployment decisions including identifying
the entities, such as CPUs, of the target environment where the packages will
be deployed. The Model Integrated Deployment and Configuration Environment
for Composable Software Systems (MIDCESS) [153] DSML in CoSMIC can be
used to model deployment plans for DRE system components.

• Analysis and benchmarking, which enables run-time reconfiguration and re-
source management to maintain end-to-end QoS. CoSMIC provides the Bench-
mark Generation Modeling Language (BGML) [260], which models DRE sys-
tems’ QoS requirements and synthesizes empirical benchmarking testsuites. Ad-
ditional analysis capability is achieved via integration with external tools, as de-
scribed in Sect. 3.

• Deployment, which triggers the installed binaries and brings the application to
a ready state. CoSMIC is integrated with a run-time framework called DAnCE
(Deployment And Configuration Engine), which implements the OMG’s D&C
specification and can be used to model the deployment of DRE system packages
according to precisely specified plans.

The CoSMIC toolsuite also provides the capability to interwork with other MDA and
analysis tools, such as Cadena [198] (Sect. 2.2), and aspect model weavers, such as
C-SAW [159]. The integration of CoSMIC with Cadena is the focus of Sect. 3.

The core DSML provided by CoSMIC is PICML, which figures prominently in
the integration of CoSMIC and Cadena described in Sect. 3. PICML allows devel-
opers to model packages of components into assemblies that can then be configured
and deployed appropriately. Configuration and deployment concerns cross-cut as-
semblies and systems. These cross-cutting concerns are captured by the different
aspects of PICML. During the configuration and deployment process, multiple con-
cerns captured in the format of metadata in the component development process are
woven together by PICML, as shown in Fig. 2.

PICML allows the specification of the component-based deployment and con-
figuration concerns outlined above by allowing users to model them as elements in
a GME paradigm. Additional constraints are defined via GME’s Object Constraint
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Fig. 2. The PICML Architecture

Language (OCL) [319] facilities to ensure that the models built using PICML are
semantically valid. PICML’s constraints check that the static semantics (i.e., the se-
mantics that are required to be present at design-time) are not violated. For example,
at design-time, PICML can enforce the CCM constraint that only ports with the same
interface or event type can be connected together.

The generative capabilities of PICML enable the separation of cross-cutting de-
ployment and configuration concerns, which are represented in the form of XML
metadata and whose semantics can be validated automatically. The DAnCE run-time
framework provided by CIAO is then responsible for weaving these concerns into
component middleware and applications. The model interpreters in PICML target
the configuration and deployment of DRE components for CIAO. We chose CIAO
as our initial focus since it is QoS-enabled component middleware designed to meet
the requirements of DRE systems. As other component middleware platforms (such
as J2EE and .NET) mature and become suitable for DRE systems, we will (1) en-
hance CoSMIC so it supports Platform Independent Models (PIMs) and then (2)
include the necessary patterns and policies to map these PIMs to Platform Specific
Models (PSMs) for various component middleware platforms.

2.2 Overview of Cadena

The Cadena MDD toolsuite was built to provide a variety of forms of support for de-
veloping component-based distributed systems, including component interface spec-
ification via CCM IDL, construction of component assemblies using multiple system
views, and generation of configuration and deployment XML data. A primary focus
of work on Cadena has been to investigate a number of different structural and behav-
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ioral analysis techniques for component-based systems. The following is a summary
of the capabilities Cadena provides to develop these types of systems:

• A collection of lightweight specification forms that can be attached to IDL to
specify mode variable domains, intra-component dependencies, and component
state-transition semantics. These forms have a natural refinement order so that
useful feedback can be obtained with little annotation effort, and increasing the
precision of annotation yields more precise analysis. Cadena specifications also
allow developers to specify the same information in different ways, achieving a
form of checkable redundancy that is useful for exposing design flaws.

• Dependency analysis capabilities that allow tracing inter/intra-component event
and data dependencies, as well as algorithms for synthesizing dependency-
based real-time and distribution aspect information. In essence, these dependency
analyses provide different forms of architectural “slicing” that help developers
identify dependencies among components for system understanding and for guid-
ing component integration tasks, such as establishing event handling priorities
and locking policies.

• A novel model-checking infrastructure (based on the Bogor model-checking
framework [102]) dedicated to event-based inter-component communication via
real-time middleware enables system design models (derived from component
IDL, component assembly descriptions, and annotations) to be model-checked
for global system properties. This enables developers to perform simple simula-
tions of their systems to reason about, e.g., high-level mode transitions, and to
check system designs against crucial system requirements phrased in the form of
invariants, event/state ordering constraints, and component interaction protocols
phrased as regular expressions or temporal logic formulas.

• A component assembly framework supporting a variety of visualization and pro-
gramming tools for developing component connections, such as hiding or chang-
ing the color of component and connections that satisfy user-defined queries of
component and connection attributes.

• A component deployment facility that auto-generates XML deployment and con-
figuration information.

Cadena is implemented as a set of plug-ins to IBM’s Eclipse IDE, which facilities
an uninterrupted workflow in which component interface and architectural design
can be performed in the same tool as the component implementation (e.g., using
the sophisticated Java development environment of Eclipse). Implementing Cadena
as an Eclipse plug-in also simplifies the incorporation of analysis tools, such as the
Bogor model checking engine.

In the integration with CoSMIC, we focus on using Cadena’s system config-
uration dependency analysis facilities. Even with small systems of ∼20–30 com-
ponents, relationships between components and component dependencies are often
hard to determine from visual inspections of textual or graphical component assem-
bly views. Component-based DRE system’s can often have well over 1000 com-
ponents [391, 366], and engineers at Boeing and Lockheed Martin with whom we
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collaborate have identified the development of automated support for component de-
pendency analysis and visualization as a high priority.

Given a component library and component assembly description (along with the
optional Cadena property specification file described below), Cadena’s dependency
module builds a port dependence graph PDG = (N,E) where each node n ∈ N is a
component/port pair (c.p). Edges (i.e., dependencies) between PDG nodes arise from
two sources: inter-component dependencies corresponding to port connections spec-
ified in component assembly descriptions and intra-component dependencies cap-
tured by CPS declarations in component property specifications. Cadena provides
the following analysis capabilities for dependency graphs:

• Forward and backward slices, which detects the components that are affected
by (forward) or affect (backward) a particular component or port. Note that slices
can be computed at two levels of granularity: (1) a component-level forward slice
finds all components that are affected by a given component vs. (2) a port-level
forward slice finds all components that are affected by a port.

• Mode-based slicing and chopping, which leverages specifications of dependen-
cies that capture the fact that some dependencies are only active when a compo-
nent is in a particular mode. This enables more precise views of system depen-
dencies that reflect only those dependencies that are active when the system is in
a particular state. In either case, slices are constructed by considering the reach-
ability of components in the port dependency graph described above.

• Chopping, which highlights all the ports and components that lie on a path be-
tween two given components/ports. Intuitively, given two components C1 and
C2, a chop based on C1 and C2 finds all paths between C1 and C2 by intersect-
ing the forward slice from C1 and the backward slice from C2.

• Mode-based slicing and chopping, which leverages specifications of dependen-
cies that capture the fact that some dependencies are only active when a compo-
nent is in a particular mode. This enables more precise views of system depen-
dencies that reflect only those dependencies that are active when the system is in
a particular state.

• Cycle detection, which detects cycles along a series of event connections in the
dependency graph. In certain computational models, event cycles may indicate
design flaws.

Figure 3 shows a portion of Cadena’s interface for issuing dependency-related
queries over the graphical structure of a system configuration. The displayed pull-
down menu allows developers to select from among the dependency analysis ca-
pabilities described above. The results of an analysis are displayed in the tool by
changing the color of relevant components, ports, and connections. For example, the
results of a forward slice are displayed by rendering in gray all the components,
ports, and connections affected by the given component.

Cadena decouples various aspects of modeling by requiring that these cross-
cutting concerns be captured in the following types of files located in a common
project space:
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Fig. 3. Cadena Dependency Analysis Interface

• IDL3 file *.idl, which contains OMG’s standard interface description lan-
guage metadata describing components and their interfaces.

• Scenario file (*.scenario), which describes an assembly of interconnected
CCM components, including the value of their configuration properties. Cadena
provides a graphical visualizer, a text editor, and a form view editor to manipulate
*.scenario files. The equivalent of a scenario file in CoSMIC’s PICML is the
CCM component assembly view, which enables graphical editing of properties.

• Profile file (*.profile), which acts as a scenario format definition and vali-
dation system by defining the type of the properties that can be associated with
different components and/or connections. Cadena supports three types for prop-
erties: STRING, INT, and BOOLEAN. There is no equivalent for the .profile
file on PICML, which is another motivation for integrating CoSMIC and Cadena.

• CPS (Cadena Property Specification) file (*.cps), which contains light-
weight semantic annotations to capture abstract semantics that can be leveraged
by Cadena’s analysis facilities. For example, in DRE systems, a component’s be-
havior is often organized into a collection of modes (e.g., a component can be
in an active or inactive mode, or in a normal or fault-recovery
mode, etc.). Modes can be used to represent the abstract state of a component.
A component’s mode state is often implemented as a variable with an enumer-
ated type that includes each of the mode states, and a modal component typically
varies its behavior by branching to different implementations based on the cur-
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rent state of its mode variable. The *.cps file provides a means to capture the
modes within a component and the internal interconnections within each com-
ponent that depend on the mode. Information in this file includes conditional
behavior, such as a set of inputs of a component having an effect on a set of
outputs only when that component is in a particular mode/state. Cadena *.cps
files can also include simple state transition systems – finite state automata that
describe the abstract control flow of actions on a component’s interface (e.g.,
method calls and event publishing) as well as transitions on mode state variables.
This information can be used to generate finite state models suitable for simula-
tion or state-space exploration (model checking) of system designs. There is no
equivalent for the *.cps file in PICML or in CCM.

3 Approaches to Integrating MDD Tools for DRE Systems

Due to the magnitude and complexity of the DRE problem space, no single MDD
toolsuite yet provides solutions to all challenges of large-scale DRE system devel-
opment. For example, CoSMIC did not initially provide tools for analyzing and val-
idating the functional correctness and QoS properties of DRE systems. Likewise,
Cadena did not initially provide capabilities for modeling elements and procedures
meaningful for important stages of the development of DRE systems, such as instal-
lation, packaging, and deployment. What we therefore required was an integrated
MDD toolsuite that developers of DRE systems could use to compose, configure,
and deploy their applications end-to-end to help (1) identify bugs early in the lifecy-
cle, (2) reduce total development costs, (3) decrease time to market, and (4) increase
the reliability of DRE systems.

Integrating CoSMIC and Cadena required that (1) software components and as-
sociated modeling artifacts could be manipulated via any of their MDD tools, (2)
changes to the components and modeling artifacts made by one tool could be re-
flected in other tools, where applicable, (3) any tool capturing unique information
(i.e., not captured by any other tool) required special support to preserve this infor-
mation correctly, and (4) all the pieces of information captured by each integrated
MDD tool could be treated as parts of a single global project. Achieving this level of
integration was hard since different MDD tools captured different sets of properties.
For example, certain CoSMIC tools captured certain parts of a project, whereas other
parts are captured by certain Cadena tools.5

The remainder of this section describes key challenges that arose when integrat-
ing CoSMIC and Cadena and discusses our solutions to resolve these challenges.
These challenges are discussed in order of increasing complexity, where a subse-
quent challenge could be resolved only when the previous challenge was addressed.
Section 4 then presents a case study of a robot assembly application that illustrates
our experiences applying the integrated CoSMIC and Cadena toolsuites to a repre-
sentative DRE system.

5 The subset of the project captured by one tool is referred as the tool’s model document.



340 Gabriele Trombetti et al.

Challenge 1: Identifying an Inter-tool Communication Model

Context. Different MDD tools provide different capabilities, e.g., browsable models
and visual modeling of deploy requirements vs. rate-monotonic schedulability analy-
sis and model checking. Large-scale DRE systems, however, may require the use of
multiple MDD tools. What is needed is a communication model for interoperability
among various MDD tools. An important goal of our work was therefore to transfer
model documents back and forth between CoSMIC and Cadena, while minimizing
user intervention.
Problems. Since Cosmic and Cadena were developed independently for several
years they had little/nothing in common with respect to the type of model docu-
ments they used. Moreover, under many aspects these tools do not even capture the
same type of information, e.g., the *.scenario and *.IDL3 model documents
of Cadena appear to have equivalent representation in CoSMIC, but there are sub-
tle differences between the model documents. Likewise, the *.profile, *.cor,
and *.cps model documents have no equivalent in CoSMIC. Similarly, 80% of the
information in the CoSMIC model documents have no direct equivalent in Cadena.

Many standard interoperability solutions available for tool interoperability cater
to a specific concern. For example, the Analysis Interchange Format (AIF) [245]
provides interoperability by promoting seamless exchange of only analysis data
among tools. Similarly, the Hybrid Systems Interchange Format (HSIF) [328] pro-
vides model exchanges for those systems that are modeled as hybrid systems, but
does not support exchanging analysis information. In many cases, therefore, an in-
terchange format might not support a feature of a tool. Hence, a decision to use such
an interchange format would preclude the use of that feature, thereby decreasing the
value of the tool. It is also undesirable to create point-to-point solutions since they
do not scale as the number of tools with different capability increases. It is there-
fore necessary to develop a framework that allows seamless interoperability between
desired features among tools without creating point-to-point solutions.
Solution approach → An open tool integration framework. Our approach for in-
tegrating CoSMIC and Cadena is based on the Open Tool Integration Framework
(OTIF) [217] developed by the Institute for Software Integrated Systems (ISIS)
at Vanderbilt University. OTIF consists of a backplane, an integration repository,
application-specific tool adapters, and semantic translators. The backplane provides
a communication and subscription/notification mechanism for other tools. The back-
plane also acts as a common integration repository for the data stored in a canonical
syntactical format, but which may have different semantics. OTIF’s tool integration
repository stores data in a format understood by at least one of the communicating
tools. Custom semantic translators and tool adapters can then be plugged into the
OTIF backplane and used to (1) automatically convert data in a format understood
by one tool into data for another tool and (2) communicate between the tools.

A novel aspect of OTIF is its ability to integrate MDD tools that were not initially
intended to interoperate, which is why we selected it for our CoSMIC↔Cadena in-
tegration. Figure 4 illustrates the interworking of CoSMIC and Cadena via the OTIF
backplane. The OTIF backplane supports standard CORBA [315] communication
capabilities using TAO [378], thereby allowing distributed interoperability, as well as
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Fig. 4. CoSMIC↔Cadena Interoperability via OTIF

platform-independent interoperability. Custom tool-specific adapters must be written
by developers who wish to export desired tool-specific data to the backplane. Other
tools that want to interoperate with this tool must provide an adapter that converts
data on the backplane to the format it desires. We have developed appropriate tool
adapters for CoSMIC and Cadena, along with semantic translators that help these
two toolsuites interoperate via the OTIF backplane.

Challenge 2: Devising Effective Communication Protocols and Data
Interchange Formats

Context. An important concern for tool interoperability is ensuring that the tools
understand each other’s data formats and their semantics. What is needed is a mech-
anism that allows exporting and importing tool-specific data using a tool integration
framework, such as OTIF.
Problems. There is often minimal overlap between tools, other than some common
aspects pertaining to DRE systems. For example, the common information in CoS-
MIC and Cadena is restricted to the fact that both tools are tailored to support DRE
systems built using the CORBA Component Model (CCM) [311]. These common-
alities are localized in certain artifacts, such as the IDL descriptions and assembly
information of CCM components.

The same problem seen from another perspective is that when tools are inte-
grated, they capture and contain in their model document two types of properties: (1)
shared properties, i.e., properties being captured also by other tools being integrated,
and (2) unique properties, i.e., properties not captured by any of the other tools being
integrated. Shared properties must often be transferred to other tools to synchronize
the state amongst the tools. In contrast, unique properties cannot reasonably be trans-
ferred to another tool since they would not be understood.
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The distinction between shared and unique properties implies a separation of
concerns that should be enforced by the two groups of tool properties. This, in turn,
implies the following four problems:

(1) The complexity of splitting properties in two groups ( i.e., shared vs unique).
(2) The task of transferring the shared group to remote tools.
(3) The choice of a common syntactical (not semantic) format for performing the

communication.
(4) The complexity of semantically merging the transferred information into the

information already present in the destination tool.

Problem 4 is the hardest since it requires the creation of semantic translators that can
understand the formats of both tools to enable integration.
Solution approach → Minimizing inter-tool information exchange. Problems 1 and
4 are interrelated (1 being easier to solve than 4). These were resolved together using
semantic translators and a merging algorithm, as described in Challenge 3 below.

We resolved problem 3 by identifying an information model based on XML for
the data that is needed for the Cadena and CoSMIC tools. For example, CoSMIC
generates information captured by the *.scenario model document in the form
of XML descriptors and then creates a plug-in to import this XML format into Ca-
dena. The reverse direction for this format incorporates the changes suggested by the
Cadena analysis tools into the CoSMIC models.

Problem 2 is more complex than problem 3, so we resolved it using OTIF, which
allowed us to work at a significantly higher level of abstraction. For example, OTIF
relieved us from many low-level details, such as the complexity of handling a com-
munication among multiple tools. Each tool can be started and shut down at any
time, can run in multiple instances, and might need to search for other tools and
(re)establish connections to them at any time.

To function properly, OTIF requires support for document creation, persistence,
and navigation to make data interchange seamless. OTIF thus supports a Univer-
sal Data Model (UDM) [94] interface to access and manipulate data on the OTIF
backplane. UDM provides a development process and set of tools that generate C++
interfaces from data structures described using UML class diagrams. These inter-
faces and the underlying C++ libraries enable convenient programmatic access and
automatically configured persistence services for data structures described via UML
diagrams. We leverage these UDM capabilities for the data exchange between CoS-
MIC and Cadena.

The modeling paradigms, such as CoSMIC’s PICML, built using GME were ex-
plicitly developed to expose a UDM interface. The Eclipse framework used by Ca-
dena, however, does not support UDM natively, so we created a UML class diagram
that described the Cadena models.

Challenge 3: Achieving Lossless Semantic Transfers of Data

Context. For any successful tool interoperability comprising data interchange, it is
important that the exchanged data be transferred without loss of essential semantic
information.
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Problems. Lossless semantic transfers of tool-specific data are hard since different
tools address different aspects of DRE systems and therefore deal with different types
of data, with their own semantics, and representation. It is therefore possible (and
common) for mismatches to arise between data supported by individual tools and
how they are managed by the tool. For example, we outline the differences between
CoSMIC and Cadena formats below:

• Cadena *.scenario files support properties on connections (such as event
sources/sinks and invoke connections), whereas CoSMIC’s PICML does not.

• Both PICML and Cadena support CCM connections types, such as emit, publish,
and invoke, but PICML provides specialized connector types for each of these in
its CCM component assembly metamodel, whereas Cadena infers the connector
types from the port types.

• PICML supports QoS requirements on connections that are passed to the de-
ployment run-time for validity checks and potential optimizations at deployment
stage, whereas Cadena does not support this capability.

• PICML provides a specialized connector for a publisher/subscriber connection
involving multiple publishers and multiple receivers, whereas Cadena uses mul-
tiple connections for this case.

• Cadena supports the STRING, INT, and BOOLEAN attribute types, whereas
PICML supports Boolean, Byte, ShortInteger, LongInteger, Real-
Number, String, GenericObject, GenericValueObject, Generic-
Value, TypeEncoding, and TypeKind.

Given these constraints, it is straightforward to create simple lossy export and
import algorithms that would lose information not captured by one toolsuite vs. the
other. This design, however, would force users to reenter information twice for each
toolsuite, thereby increasing effort and the chance of inconsistencies in information
maintained across the tools. What was desired, instead, is a write-once approach,
whereby once information was entered using either CoSMIC or Cadena tools, the
data transfer algorithm would preserve the data and its semantics for all but a few
exceptionally rare circumstances.

One approach to handle these issues is to merge the different data handled by in-
dividual tools to form a superset that is maintained by the OTIF backplane. Transfer-
ring the complete set of information between the tools is not maintainable, however,
since whenever a feature should be added in any one of the tools being integrated,
the set of information being transferred across all tools would change. At that point,
all the semantic translators that convert documents from/to any two tools would need
to be updated to support the enlarged information set.

Solution approach → A graph-based diff-merge algorithm. Our solution uses in-
formation captured by individual MDD tools, focusing on the features that can map
between the tools, and applying graph transformation algorithms to attain the desired
interoperability. The information we transferred was contained in the CCM compo-
nent assembly view of CoSMIC/PICML and in the *.scenario and *.profile
files from Cadena, as well as the information conveyed in IDL3 files.
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In the transformation algorithm, the information from PICML is matched against
the corresponding information in Cadena. Differences are detected and then, de-
pending on the direction of communication (PICML→Cadena or Cadena→PICML),
such differences are imported into the destination tool, replacing earlier informa-
tion that was outdated. This approach resembles a diff-merge algorithm (web.umr.
edu/~gnudoc/single/emacs1934/ediff.html), thought it is performed
on data from MDD tools that were stored as a graph of interconnected information
rather than sequential text. We therefore call our approach a graph diff-merge algo-
rithm.

The graph diff-merge algorithm for exporting PICML data to Cadena follows
the steps described below (the appendix on p. 361 of this book explains the CCM
terminology used in these steps).

(1) Every CCM component assembly generates a separate *.scenario file. The
full path name of the assembly from the RootFolder is encapsulated in a property
called PICML_pathname, which is stored by Cadena and eventually returned to
PICML unchanged. This property is needed to match the same source CCM
component assembly on the PICML side when reimporting.

(2) CCM component assembly-level properties are transferred to Cadena as sce-
nario-level properties if the type is supported by Cadena, otherwise they are
retained on the PICML side.

(3) All the PublishConnectors are checked and the newly created ones are flagged
with a unique ConnectorID, which is in a DeployRequirement having a magic
name that is disregarded by the DAnCE D&C run-time system provided by
CIAO.

(4) All PublishConnectors are checked for the presence of a Requirement with an-
other magic name called CadenaProperties. If found, all the properties encap-
sulated inside such a requirement are output as properties on the EventSource-
to-Sink corresponding connection in Cadena, which compensates for the lack of
properties on connectors on the PICML side.

(5) All Components that have an output Emit or an Invocation connection are
checked for a property with a magic name: CadenaEIProperties (where EI
stands for “Emit–Invoke”). This property contains a string that is the dump of an
XML file containing multiple properties for each Receptacle-to-Facet or Event
Source-to-Sink Emit connection output from that component. The embedded file
is parsed and the contained information is extracted and sent to Cadena, which
accounts for the lack of properties on emit and invoke connections on the PICML
side.

(6) All component instances are browsed and their name and type are transferred
to Cadena. The attached properties are transferred to Cadena only if they are a
type supported by Cadena, otherwise they are retained on the PICML side. For
all components, each connection to a remote port or to a PublishConnector is
passed to Cadena.

At this point, the XML file containing the information about the scenario (and im-
plicitly about the profile) is sent to the OTIF backplane. On the Cadena side it is
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fetched, de-encapsulated from XML, and dumped to disk, possibly overwriting a
preexisting version.

During Cadena export to PICML, the transfer across the OTIF backplane acts in
the reverse way. The key points of the graph diff-merge algorithm on the PICML
side are as follows:

(1) Using the PICML_pathname information, the same CCM component assembly
of the export is matched so that the modifications can be performed in the correct
place.

(2) Based on the names of the component instance, the components are matched.
(3) Based on the ConnectorIDs, the PublishConnectors are matched. On the PICML

side, the components and the PublishConnectors that have no match on the Ca-
dena side are considered deleted by the Cadena user and thus get destroyed on
the PICML side. The properties and requirement that only refer to those are also
destroyed.

(4) The Components and PublishConnectors on the Cadena side that are unmatched
on the PICML side are considered newly created and thus created on the PICML
side.

(5) All the emit and invoke connections at the PICML side are deleted, and are
recreated new from the information on the Cadena side.

(6) All the properties on PICML components and at the component assembly level
are browsed. For those where the type could have been passed to the Cadena
side, a match to the properties on the Cadena side is attempted. If the match
fails, those PICML properties are considered to be deleted by the Cadena user,
so they are destroyed on the PICML side.

(7) For all properties on Components on the Cadena side, a match is attempted on
the PICML side. If the match succeeds, the value is updated on the PICML side,
otherwise this is considered a new property created by the Cadena user so a new
property gets created on the PICML side.

(8) Steps 6 and 7 are repeated again for properties on PublishConnectors, with
the difference that the match is attempted inside the Requirement called Ca-
denaProperties, if it exists. The newly created properties are also created there
(if a requirement with such a name does not exist, it is created and attached to
the PublishConnector).

(9) Steps 6 and 7 are also repeated again for the properties on EmitConnector and
PublishConnector, but this time the match is attempted on the XML content of
the magic property CadenaEIProperties on the component that has the outgoing
emit or invoke connection, which is created if needed.

To perform these steps for the two directions of communication, we used the
GReAT (Graph Rewriting And Transformation) [243] tool. GReAT is a GME-based
MDD tool that can be used to visually define graph transformation among networks
of objects that are accessible with UDM. GReAT shortened our development time
significantly since it is much more readable and maintainable than using a third-
generation programming language, such as C++ or Java. Both GME project files and
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XML files whose schema can be defined with a UML diagram can be accessed via
UDM.

A GReAT transformation can be run interpretatively during development and de-
bugging. It can also be used to generate C++ header and implementation files that
can be compiled for a release version of the transformation. The current version of
the CoSMIC↔Cadena import/export transformation contains more than 2000 ele-
ments (graph pattern nodes) and 13500 lines of C++ code. Figure 4 illustrates the
architecture of this transformation process, where a bidirectional GReAT-based tool
adapter and semantic translator converts PICML assemblies to/from XML files con-
forming to the adopted interchange schema, which was chosen to conform to the se-
mantics of Cadena *.scenario and *.profile files. The schema, known to the
OTIF backplane, is used to read and validate the XML file upon arrival on the back-
plane. At every upload of a new interchange XML file onto the backplane, the tool
adapters are notified of the availability of such new CCM component assembly and
are prompted for the download. On the Cadena side, a simpler Java-based Cadena
tool adapter converts the XML to *.scenario and *.profile files and vice
versa. Our graph diff-merge algorithm is activated during the backplane-to-PICML
import and is implemented inside the GReAT-based PICML tool adapter and seman-
tic translator.

4 Demonstrating Integrated CoSMIC↔Cadena Capabilities via
a Robot Assembly Case Study

This section describes a case study of a robot assembly application we developed
using CoSMIC and Cadena in conjunction with colleagues at Lockheed Martin. This
application is representative of DRE systems in the process control domain, i.e.,
it defines an assembly line with robots creating various types of goods, which in
our case study are wrist watches assembled by robots. We describe the robot as-
sembly application below to illustrate the benefits of integrating and applying the
CoSMIC and Cadena MDD toolsuites, as described in Sect. 2 and 3. In particu-
lar, this case study illustrates how developers of the robot assembly application re-
quired multiple MDD tools, each providing different capabilities, such as configu-
ration, deployment, schedulability analysis, and model checking. The source code
and integrated MDD tools for this example are available in the CIAO release from
www.dre.vanderbilt.edu/CIAO.

4.1 Structure and Functionality of the Robot Assembly Application

Figure 5 illustrates the five core components in the robot assembly application:
ManagementWorkInstruction, WatchSettingManager, HumanMach-
ineInterface, PalletConveyorManager, and RobotManager, all of which
are implemented as CCM components using CIAO. These individual CCM com-
ponents can be interconnected to form CCM component assemblies and ultimately
deployed using DAnCE to create complete applications.



MDD Environment for DRE Systems 347

����

���
�����

��0���

$0���)����1���

��������$������

$0���)��

�)����

2������

2�����

%��)����

���������

%����

3���������4

	�����

$������

$�������

	�
����

����������

3���)�

$�������

%������

�����

%������

�������

���
�����

%������

���
�����

���
��

������

������

�������

������

������

$0���)-���

.�����
5���

-���

.�����

	��������

��������

����

���������

����������

�����

��������

3����

����

Fig. 5. Robot assembly model

Figure 6 depicts a sequence diagram for the robot assembly production process.
The ManagementWorkInstruction and HumanMachineInterface com-
ponents interact with humans, whereas the PalletConveyorManager and Rob-
otManager components interact with the pallet moving and assembling tools’
hardware devices, respectively. The normal operation of the robot assembly appli-
cation involves the following steps:

(1) The ManagementWorkInstruction asks for a watch to be produced by
sending an event to the WatchSettingManager.

(2) The WatchSettingManager emits an event to the HumanMachineIn-
terface asking to validate the order. The HumanMachineInterface ac-
cepts the order by invoking an operation on a CCM facet belonging to the
WatchSettingManager.

(3) The WatchSettingManager uses a different event to notify the Manage-
mentWorkInstruction that the order was accepted and then displays the
work on the HumanMachineInterface.

(4) The WatchSettingManager emits an event to the PalletConveyor-
Manager to move the pallet into position. The PalletConveyorManager
then responds with another event acknowledging the status of good positioning
on the pallet. This event includes an enumerated type indicating status, such as
acceptance, rejection, completion, failure, and/or cancellation.

(5) The WatchSettingManager again emits an event to the HumanMachine-
Interface asking for confirmation to perform a production step. The Human-
MachineInterface accepts by invoking an operation on a facet.
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Fig. 6. Robot assembly production sequence

(6) The WatchSettingManager emits an event to the RobotManager asking
it to process the pallet. The RobotManager performs the job and then responds
via an event acknowledging the success (or failure) of the assembling operation.

(7) The WatchSettingManager displays the completed work to HumanMac-
hineInterface via an event. The HumanMachineInterface validates
the work via a facet operation call (same as in step 1).

(8) The WatchSettingManager sends an event asking the PalletConveyor-
Manager to move the pallet out of the working area and into a finishing area.
The PalletConveyorManager notifies the status of the operation back to
the WatchSettingManager with the acknowledgement event already dis-
cussed. Steps 2–7 can be repeated if there are additional pallets to process.

(9) The WatchSettingManager sends an event to the ManagementWork-
Instruction notifying it that the requested job has been completed.

4.2 Key Capabilities Provided by CoSMIC and Cadena Integration for the
Robot Assembly Application

Section 4.1 described the structure and functionality of the robot assembly applica-
tion. We now illustrate the key challenges encountered when integrating the CoSMIC
and Cadena MDD toolsuites and applying them to the robot assembly case study.
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Capability 1: Choosing Appropriate Communication Mechanisms.

Developers of large-scale component-based DRE systems must determine which
communication mechanisms their components should use to interact. A key design
decision is whether to use CCM facets and receptacles, which can perform point-
to-point synchronous operation invocations between components, or event sources
and sinks, which can exchange typed messages asynchronously with one or more
components. Applying an MDD tool like PICML (Sect. 2.1) can help developers
reason more effectively about which communication mechanism to select. Below,
we demonstrate how our MDD tools help developers make better design choices.
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Fig. 7. Robot assembly CCM component assembly Visio drawing

Figure 7 shows a Visio drawing of the robot assembly component interaction. We
used this informal drawing to guide our subsequent formal modeling and analysis
of the robot assembly application. In particular, we created a model of the CCM
component assembly in PICML and then used Cadena to analze, validate, and refine
this model. After validation by Cadena, we used the CoSMIC toolsuite to deploy,
configure, and run the robot assembly application. Figure 8 (without the connection
indicated by the arrow) represents the PICML model that captures the application
represented by the Visio drawing in Fig. 7.

Unlike the informal Visio drawing, the PICML model is semantically navigable,
down to the data types and events exchanged by every operation and event com-
munication. By inspecting the PICML model, we can quickly spot design fallacies
and/or vulnerabilities, e.g., the return value of the facet invocation for the response of
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Fig. 8. Erroneous robot assembly PICML model

HumanMachineInterface to WatchSettingManager (Sect. 4.1) is void
and there are no out or inout parameters, yet the operation is not defined as a CORBA
oneway.

Further analysis indicates that a more appropriate choice for this communication
would be an asynchronous connection (event) rather than a facet/receptacle. This
analysis thus reveals a design mistake made by the developers at the components
(IDL) modeling stage. Such mistakes are less common when working with visual
modeling environments due to the visual feedback developers receive continuously.
There is still a possibility of errors due to the fact that at component (IDL) model-
ing stage the view of the CCM component assembly providing the “big picture” is
not yet available. At the time the component assembly is also modeled, however, the
presence of a navigable visual model significantly helps developers spot such prob-
lems, compared with reading hundreds of lines of CORBA IDL code. In addition,
refinement cycles for correcting such errors in the IDL and then adjusting the com-
ponent assembly accordingly are much faster to perform with a visual modeler than
when dealing with low-level source code.

Capability 2: Detecting Type Mismatches at Design-time vs. Run-time

As mentioned in Sect. 1, a key goal of MDD is achieving “correct by construction”
programs. In particular, MDD tools should allow only correct choices and/or detect
maximum number of errors at design-time rather than run-time. Constraining a cor-
rect choice or performing an early detection of mistakes significantly reduces the
time needed for fixes.

To evaluate how effectively our integrated CoSMIC and Cadena tools described
in Sect. 3 work in the context of our robot assembly application, we deliberately
tried to introduce a mistake in our component assembly by connecting an additional
port to a destination port of the wrong type. This mistake is detected by PICML’s
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constraint checker because the two ends are not of the same type, and thus disallowed
by the PICML paradigm. It would not be desirable, however, to have trivial human
mistakes detected by only one tool (e.g., PICML), as this would defer the detection
significantly when users work for long period of time on other tool(s) (e.g., Cadena)
before going back to PICML.

Cadena (described in Sect. 2.2) also immediately detects a set of potential hu-
man mistakes, including connections with mismatched endpoints and mismatched
type for properties on components. These checks are performed both at modeling
time and model-import time and can be verified, e.g., by importing into Cadena an
erroneous model produced by a tool that has weaker validation support. In our case,
PICML is (currently) the only other tool, so testing this feature required manually
disabling PICML’s constraint checker, manual creation of an invalid connection, and
then exporting the result to Cadena.

For this example, we chose to connect the analysis receptacle of the Watch-
SettingManager to the controller facet of PalletConveyorManager,
as shown in Fig. 8 with a block arrow. Figure 9 shows how Cadena detected the
wrong connection, and printed an error message. Early (possibly immediate) detec-
tion of user mistakes, even when limited to simple ones, is important since it reduces
the work that must be undone to roll back to a valid project state when a mistake is
detected.

Capability 3: Analysis of Component Assemblies.

Another important suite of capabilities that we have developed is Cadena’s collection
of assembly graph analyses and architectural slicing facilities. These range from sim-
ple detection of cyclic call-chains and event feedbacks to more sophisticated forms
of graph reachability and dependency analysis that also include information about
certain aspects of component state.

We now consider the use of the cycle detection mechanism for the robot model
example. Since all robot assembly components only interact with the Watch-
SettingManager, any possible cycle must pass through that component. Right
clicking on the WatchSettingManager component in the graphical scenario
view of Cadena and selecting the “cycle check” feature highlights two components
of the assembly – the HumanMachineInterface and the WatchSetting-
Manager – which form a cycle, as shown in Fig. 10. The cycle detection stops after
the first detection, which is why only two components are highlighted (darker shade)
in the figure. If we disconnect those two components and repeat the cycle check,
however, other components will be highlighted. The WatchSettingManager af-
fects and is affected by every other component, so eventually every component is in
the downstream path of every other component in the component assembly.

Since we have at least one cycle we cannot be certain that deadlocks do not oc-
cur. Deadlocks for such a model are thus “implementation defined,” which means
that they might or might not be avoided with a more sophisticated implementation,
e.g., one that handles assumptions that cannot be (or are not) modeled. The system
therefore cannot be validated from a modeling perspective. Examining the produc-
tion sequence diagram in Fig. 6 above, however, clearly shows that no deadlock can
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Fig. 9. Error detected by robot assembly Cadena model

occur, at least during the normal production use case. This information clashes with
the analysis from Cadena, due to the fact that we have not yet specified modal infor-
mation in our components, i.e., component operational modes specifying interactions
between input and output ports of the same component (intra-component interac-
tions). Specifying modal information allows a more precise detection of cycles and
potential deadlocks.

For the semantics shown in Fig. 6 production sequence diagram, the most
components can remain stateless. At least two components require state, how-
ever, the WatchSettingManager and the HumanMachineInterface. For
the WatchSettingManager, the sequence diagram in Fig. 6 implicitly defines
the following seven states: (1) WaitingWorkOrder, (2) WaitingAcceptWorkOrder, (3)
WaitingPalletReady, (4) WaitingProceed, (5) WaitingPalletComplete, (6) WaitingPal-
letMoved, and (7) WaitingProcessingAccepted. In each state, no more than one input
port affects an output port, and not all the output ports are affected (in facts, no more
than three are affected for each mode). The other input and output ports behave as if
they were disconnected.

For the HumanMachineInterface, we need to specify that a Display-
WorkUpdate cannot trigger an AcceptWorkOrder. Otherwise, a feedback cycle with
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Fig. 10. Robot assembly modeless cycle detection in Cadena

the WatchSettingManagerwill arise. At least two states are needed, though it is
better to specify all four semantically detectable states: (1) WaitingNewWorkOrder,
(2) WaitingDisplayWorkUpdate, (3) WaitingReadyToProduce, and (4) WaitingDis-
playProcessingComplete.

The behaviors of the WatchSettingManager and the HumanMachine-
Interface components outlined above can be captured in the Cadena property
specification (*.cps) file shown below:

module RobotAssembly {
component WatchSettingManager {

mode status of {
WaitingWorkOrder,
WaitingAcceptWorkOrder,
WaitingPalletReady,
WaitingProceed,
WaitingPalletComplete,
WaitingPalletMoved,
WaitingProcessingAccepted

}
init status.WaitingWorkOrder;

dependencydefault: none;
dependencies {
case status of {

WaitingWorkOrder:
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WorkOrder -> Display;
WaitingAcceptWorkOrder:
DisplayResponse.WorkOrderResponse ->

MovePallet, Display,
ProductionReport;

WaitingPalletReady:
PalletStatus -> ProductionReport;

WaitingProceed:
DisplayResponse.ProductionReport ->

MovePallet;
WaitingPalletComplete:
ProcessingStatus -> MovePallet;

WaitingPalletMoved:
PalletStatus -> Display;

WaitingProcessingAccepted:
DisplayResponse.ProductionReadyResponse ->

ProductionReport, MovePallet;
}

}
}
component HumanMachineInterface
{

mode status of
{
WaitingNewWorkOrder,
WaitingDisplayWorkUpdate,
WaitingReadyToProduce,
WaitingDisplayProcessingComplete

}
init status.WaitingNewWorkOrder;
dependencydefault: none;
dependencies {
case status of {

WaitingNewWorkOrder:
WorkDisplayUpdate ->

HumanResponse.WorkOrderResponse;
WaitingDisplayWorkUpdate:
WorkDisplayUpdate -> ;

WaitingReadyToProduce:
WorkDisplayUpdate ->

HumanResponse.ProductionReadyResponse;
WaitingDisplayProcessingComplete:
WorkDisplayUpdate ->

HumanResponse.PalletInspectionResponse;
}

}
}

}

The Cadena *.cps file shown above sets our modal specifications for the ro-
bot assembly project. The remainder of this section refers to the modal view of
the scenario illustrated in Fig. 11. The two components for which we have de-
fined the states must be set to a globally consistent state, i.e., we cannot set the
WatchSettingManager in the WaitingPalletComplete state while the Human-
MachineInterface is in the WaitingNewWorkOrder state. We therefore set the
WatchSettingManager in the WaitingAcceptWorkOrder state and the
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Fig. 11. Robot assembly: modal view in Cadena

HumanMachineInterface in the WaitingDisplayWorkUpdate state. As
a result, only the connections that belong to the current mode will be shown (see
Fig. 11). Since the cycle analysis will detect any cycles in any of the modes, the
current model can be analyzed to detect deadlocks.

For contrast, we also show a variation of the robot assembly CCM component
assembly that is in fact not deadlock-proof and hence cannot be validated. This
variation consists of adding the connection from the WatchSettingManger/-
Analysis receptacle to the RobotManager/Analysis facet.6 We do not have
any semantic or behavioral specifications for these analysis ports. We must there-
fore assume that (1) operation calls on the facets can affect any analysis receptacle
on the same component and (2) this behavior can happen in any mode of the three
components. To reflect this scenario we add the following lines for the Watch-
SettingManager into the *.cps file shown below:

...
dependencies {
AnalysisOne.CallingBackTwo

-> Analysis.CicrleCallOne,
Analysis.CallingBackOne;

AnalysisTwo.CircleCallThree
-> Analysis.CicrleCallOne,

Analysis.CallingBackOne;
case status of

6 Figure 7 shows that the following two CCM ports were already connected: (1) Robot-
Manager/CircleAnalysis receptacle to PalletConveyorManager/Circle-
Analysis facet and (2) PalletConveyorManager/AnalysisTwo receptacle to
WatchSettingManager/AnalysisTwo facet.
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...
}

The resulting scenario shows a cycle (illustrated in Fig. 12) in at least one mode
(and in this particular case, in all the modes). Armed with this knowledge, therefore,

Fig. 12. Robot assembly: Cadena model after circle analysis

any deadlock avoidance must be at the implementation level, i.e., this model cannot
be validated against deadlocks without further knowledge of the semantics at the
modal level.

4.3 Summary of the Robot Assembly Case Study

This section used a robot assembly application case study we developed with our
colleagues at Lockheed Martin to showcase our integration of CoSMIC and Cadena.
The case study shows how semantic validation of models can help detect problems
earlier in the software lifecycle, e.g., immediately after the planning of the inter-
faces, but before implementing the business logic. In our experience, early detection
of defects yielded fewer code revisions, lower development costs, and shorter time
to market. This “correct by construction” paradigm and the ongoing checking for
human mistakes made by CoSMIC and Cadena helped ensure proper execution in
mission-critical contexts, where run-time error detection and debugging alone was
insufficient.

In particular, the CoSMIC PICML MDD tool helped developers formally define
CCM component assemblies, while allowing better visualization and easier naviga-
tion that can be useful to improve design, spot errors more easily, and in general
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work at a higher level of abstraction and be more productive. The Cadena environ-
ment, likewise, provided powerful analysis and validation features, which were syn-
ergistic with those of PICML. In Cadena, a relatively straightforward declarative
language was used to define high-level behavioral specifications for components.
These specifications were then used for analysis and validation purposes, such as
component-dependencies traversal and ensuring the robot assembly application was
free of deadlocks.

5 Related Work

MDD technologies are used in a variety of contexts and domains. For example, the
OMG’s Model-Driven Architecture (MDA) [135] and Microsoft’s Software Facto-
ries [163] focus mainly on enterprise business applications. Other MDD technolo-
gies, such as model-integrated computing (MIC) [415], focus on embedded systems.
More recently, MDD technologies are aligning [307] to add QoS capabilities nec-
essary to support DRE systems in domains ranging from aerospace [7] to telecom-
munications [300] and industrial process control [356]. This section describes and
compares our research on MDD technologies with related work.

Our work on MDD technologies extends earlier work on MIC [246, 196, 277,
160] that focused on modeling and synthesizing embedded software. Examples of
MIC technology used today include GME [269] and Ptolemy [53] (used primarily
in the real-time and embedded domain) and MDA [309] based on UML [310] and
XML [3] (which have been used primarily in the business domain). Previous efforts
using MIC technologies for QoS adaptation have been applied to embedded systems
comprising digital signal processors or signal detection systems [296, 5], which have
a small number of fairly static QoS requirements. In contrast, our research on inte-
grating CoSMIC and Cadena focuses on enhancing and applying MIC technologies
at a much broader level, i.e., modeling and controlling much larger-scale DRE sys-
tems with multi-dimensional simultaneous QoS requirements.

Other related MDD tools are the Virginia Embedded System Toolkit (VEST)
[403] and Automatic Integration of Reusable Embedded Systems (AIRES) [257].
VEST is an embedded system composition tool based on GME [269] that (1) en-
ables the composition of reliable and configurable systems from COTS component
libraries and (2) checks whether certain real-time, memory, power, and cost con-
straints of real-time and embedded applications are satisfied. AIRES provides the
means to map design-time models of component composition with real-time require-
ments to run-time models weaving timing and scheduling attributes within the run-
time models. Although VEST and AIRES provide modeling and analysis tools for
real-time scheduling and resource usage, they have not been applied to QoS-enabled
component middleware, which is characterized by complex interactions between the
components, their containers, and the provisioned services, and across distributed
components via real-time event communication or request/response. Moreover, our
research on the integration of CoSMIC and Cadena involves whole-system global
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analysis of large-scale DRE system for end-to-end timing constraints, as well as
configuration and deployment.

Another project aimed at tool integration is the Open Tool Integration Frame-
work (OTIF) [217], which was developed by the Institute for Software Integrated
Systems (ISIS) at Vanderbilt University. As opposed to our approach – where most
features of Cadena and CoSMIC were developed separately and with no initial idea
of subsequent integration – OTIF explicitly provides a framework for integrating
tools developed as part of the DARPA MoBIES project [328]. The MoBIES work-
flows are fairly complex and allow interoperations in multiple directions among the
tools. These flows are not lossless in most cases, however, so they were able to ob-
tain seamless roundtrip interoperability in only one case, i.e., between the ESML and
OEP_Configuration formats, inside the ESML workflow.

OTIF provides a communication framework with facilities for storing various
versions of the same set of data written in different formats, subscription/notify
mechanism, and automatic triggering of application-specific translators when certain
data format’s are submitted to the backplane (data repository). OTIF requires, how-
ever, that the actual (application-specific) semantic translators and the (application-
specific) tool adapters for actually performing the communication and the translation
be provided by the user. Our work with CoSMIC and Cadena helps improve upon
earlier uses of OTIF by selecting interchange formats and transformation semantics
that can accomplish more effective roundtrip interoperability and lossless communi-
cation between the two MDD development environments.

6 Concluding Remarks

Model-driven development (MDD) of software engineering processes is emerging
as an effective paradigm for addressing key challenges of distributed real-time and
embedded (DRE) systems. MDD is a software development paradigm that systemat-
ically applies domain-specific modeling languages to engineer computing systems. It
is therefore a key step toward converting the art of programming into an engineering
process that will industrialize the software industry [163].

This chapter showed how we have integrated CoSMIC, which is an MDD tool-
suite consisting of modeling, analysis, and synthesis tools that address key lifecycle
challenges of component-based DRE systems with Cadena, which is an MDD tool-
suite for modeling and model checking component-based DRE systems. We demon-
strated how CoSMIC can leverage Cadena/Bogor’s model-checking and verification
capabilities to raise the reliability of component-based DRE systems significantly,
while also reducing development time and effort. We also showed how the capabili-
ties provided by CoSMIC and Cadena are complementary and can help developers of
component-based DRE system middleware and applications view and analyze mod-
els from different perspectives.

The novelty of our approach focuses on exchanging a minimal set of data be-
tween interacting tools, namely the common subset of properties captured by the
tools. Modifications on a project made by CoSMIC tools can thus be transferred to
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Cadena tools and merged into the model document of the destination tools and vice
versa. Modifications performed on properties captured uniquely by CoSMIC tools
need not be transferred to Cadena tools and vice versa. Depending on the tools being
integrated, the merging of modifications into a tool’s model document can be per-
formed automatically by semantic translators (which keep state in this case) or tool
adapters (which can access the internal state of the tool). In either case, our general
approach can be applied to simplify the integration of various MDD tools, e.g., to
provide model checking, schedulability, and stability analysis.

Section 3 describes a graph diff-merge algorithm that transfers modifications into
a destination tool’s model document and semantic translators that convert between
the formats understood by various CoSMIC and Cadena MDD tools. Graph trans-
formation is used to define algorithms for semantic translation and merging directly
at the metamodel level, i.e., at a higher level of abstraction than provided by third-
generation programming languages. This approach (1) reduces the time needed to
develop semantic translators, compared with manually writing a backtracking engine
to match entire graphs, (2) reduces sporadic and hard-to-track errors that stem from
manually manipulating pointers, allocating resources, and handling exceptions, and
(3) increases the readability and maintainability of the algorithms, compared with
conventional handwritten code in third-generation languages.

The lessons learned by applying our integrated CoSMIC and Cadena toolsuite to
the robot assembly case study described in Sect. 4 illustrated that:

• Not every MDD tool offers the same capabilities, but a collection of these tools
is needed to develop DRE systems, which is why interoperability between the
tools is necessary. For example, CoSMIC and Cadena have different modeling
capabilities and validation functionalities that we combined to provide a broader
range of capabilities for developers of our robot assembly application.

• Although partial, user-assisted interoperability is easier to implement, it does not
prevent human mistakes when exporting model documents from one tool and
importing them into another. It is therefore important to automate the communi-
cation process as much as possible to ensure consistency. For example, our use of
the Open Tool Integration Framework (OTIF) [217] helped minimize the number
of steps needed for users to transfer the robot assembly project between CoSMIC
and Cadena MDD tools. We also carefully crafted the graph diff-merge algorithm
to avoid manual replication of information.

• Bidirectional communication among MDD tools is an effective way to enable
users to edit models locally on whichever tool is in use, while maintaining the
ability to transfer changes to other tools automatically, thus enhancing consis-
tency. For example, when developing the communication between CoSMIC and
Cadena, we allowed developers to use the tools in any semantically valid order,
and did not constrain the actions that could be performed while working with
compatible tools.

• When achieving tool integration, key issues to consider are the communication
model, data interchange format, and algorithms for lossless data transforms. Our
CoSMIC↔Cadena integration effort focused on these three points and applied
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tools that could help reduce our development time. For example, we used OTIF
to provide communication features, document storage on the backplane, and au-
tomatic notification of availability of new documents to connected tools. We used
XML/UDM to interchange the syntactic and semantic formats of CoSMIC and
Cadena model documents. We used GReAT for our graph diff-merge algorithms
to reduce development time and detect/merge variations of graph-based data for-
mats. These tools allowed us to complete our robot assembly development and
validation tasks correctly in a relatively short time.

• Complex transformation algorithms become more manageable when working
at the meta-level. In particular, we found that several hundred well-structured
graphical transformation rules were faster to write and easier to read and main-
tain than thousands of lines of equivalent C++ code. We leveraged the GReAT
tool to visually define these graph rules and transformations.

• To define transformations at the meta-level requires access to the metamodels
(represented as graph structures) of both the source and destination semantic
formats. If any of there metamodels are not available, an alternative is to use an
XML format defined with a UML diagram (i.e., the metamodel) acting as a proxy
for the source or destination format. For example, the metamodel of the Cadena
internal document format was not available, so we used GME to define an XML
representation of it in UML. We could then use GReAT to define transformations
between the CoSMIC metamodel and the newly defined XML format, the latter
acting as a proxy for the Cadena format.

• The message flow in our robot assembly case study is largely asynchronous and
most communication is performed via events, though some callbacks are per-
formed via invocations on facet operations. It is hard to recognize this message
flow from the production sequence diagram in Fig. 6. However, MDD tools,
such as PICML in CoSMIC and the Cadena’s Scenario graphical view, can show
which communications are performed through event emissions and which are
operation invocation. MDD tools also enable more efficient browsing through
components and interfaces to indicate visually which data types are exchanged.

• Behavioral specifications of components can be used to perform dependency
checks and stability analysis in a component-based distributed application. Un-
derspecifying the behavior of such components might prevent a complete vali-
dation, as happened with the connection of the circle analysis port in our robot
assembly application.

• When solving new problems, the time needed to learn new MDD tools appropri-
ate for the solution must be considered. For example, we used GME interpreters,
GReAT, UDM, and OTIF for our robot assembly application. Acquiring exper-
tise with these tools occupied roughly a third of the total development time. It
is therefore essential to factor the time and effort needed to learn multiple MDD
tools to avoid underestimating overall development costs.
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Appendix: CCM as Captured in CoSMIC and Cadena

This appendix explains key CCM concepts and terminology, and then shows how
they are supported by CoSMIC and Cadena when diverging from each other or from
the CCM specifications.

CCM components model units of software and contain ports for communicating
with other components. Ports are divided into (1) asynchronous event-based ports
(EventSources and EventSinks) and (2) synchronous operation-based ports (Facets
and Receptacles), which can be connected together with Invoke connections (for
operation-based ports) and Emit or Publish connections (for event-based ports).

Publish connections originating from an EventSource need to pass through a
PublishConnector element in PICML before reaching any EventSink port, whereas
Cadena has no concept of PublishConnector. Emit connections can only connect
one EventSource to one EventSink, while Publish connections can be many-to-many.
The explicit distinction between Publish and Emit connections, however, only exists
in PICML, whereas in Cadena both are mapped to a generic EventSource-to-Sink
connection.

Properties are name/type/value triplets that can belong to Components or to
Requirements in PICML, whereas in Cadena they can belong to Components and
to Connections between ports. Requirements (a.k.a. Deploy Requirements, PICML
only) are contained in Components and PublishConnectors and serve to hold con-
straints (defined as a set of Properties) specifying where a Component or Publish-
Connector can be deployed.

A PICML Assembly holds Components, connections between their ports, Pub-
lishConnectors, Requirements associated to Components or PublishConnectors, and
Properties associated to Components. The correspondent of an Assembly in Cadena
is the Scenario, which contains Components, Connections between their ports, and
Properties associated to these Components and Connections. In PICML and Cadena
there can be multiple Assemblies/Scenarios distinguished by a different path from a
so-called RootFolder.

Acknowledgements

We would like to acknowledge our collaborators Sylvester Fernandez, Dave Bailey,
Chris Andrews, Bob Parkhill, and Theckla Louchios from Lockheed Martin, Eagan
and Dallas, for their help with the CoSMIC↔Cadena integration.



A Model-Driven Technique for Development of
Embedded Systems Based on the DEVS Formalism

Gabriel A. Wainer, Ezequiel Glinsky, and Peter MacSween

Department of Systems and Computer Engineering, Carleton University,
4456 Mackenzie Building, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada
gwainer@sce.carleton.ca

Summary. The development of embedded systems with real-time constraints has received
the thorough study of the software engineering community in the last 20 years. Despite these
efforts, most existing methods are still hard to scale up for large systems, or they require
expensive testing efforts. We propose a model-driven method to develop this kind of appli-
cation based on DEVS, a formal technique originally created for modeling and simulation
of discrete-event systems. This approach combines the advantages of a simulation-based ap-
proach with the rigor of a formal methodology. We will explain how to use this framework to
incrementally develop embedded applications, and to seamlessly integrate simulation models
with hardware components. The use of this methodology shortens the development cycle and
reduces its cost, improving quality and reliability of the final product. Our approach does not
impose any order in the deployment of the actual hardware components, providing flexibility
to the overall process. The use of DEVS improves reliability (in terms of logical correctness
and timing), enables model reuse, and permits reducing development and testing times for the
overall process.

1 Introduction

Embedded real-time software construction has usually posed interesting challenges
due to the complexity of the tasks executed. Most methods are either hard to scale
up for large systems, or require a difficult testing effort with no guarantee for bug-
free software products. Formal methods have showed promising results; neverthe-
less, they are difficult to apply when the complexity of the system under develop-
ment scales up. Instead, systems engineers have often relied on the use of model-
ing and simulation (M&S) techniques in order to make system development tasks
manageable. Construction of system models and their analysis through simulation
reduces both end costs and risks, while enhancing system capabilities and improving
the quality of the final products. M&S techniques let users experiment with “vir-
tual” systems, allowing them to explore changes, and test dynamic conditions in a
risk-free environment. This is a useful approach, moreover, considering that testing
under actual operating conditions may be impractical and in some cases impossible.
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M&S methodologies and tools have provided means for cost-effective validity
analysis for real-time embedded systems [381, 268]. M&S-based testing is a popu-
lar technique, which is widely used for the early stages of a project; however, when
the development tasks switch towards the target environment, the early models and
simulation artifacts are often abandoned. We propose a model-driven framework to
develop embedded systems based on the DEVS (Discrete Event systems Specifica-
tion) formalism [465]. DEVS provides a formal foundation to M&S that proved to
be successful in different complex systems. This approach combines the advantages
of a simulation-based approach with the rigor of a formal methodology. Another
advantage of using DEVS is that different existing techniques (bond graphs, cellular
automata, partial differential equations, queuing models, etc.) have been successfully
transformed into DEVS models. DEVS theory has evolved since the early 1970s,
providing a generic framework to model discrete-event systems. Many existing tech-
niques that have been widely used for the development of embedded and real-time
systems, have also been mapped into DEVS models. Many state-based approaches,
such as Verilog [255], VHDL [286], Petri nets [228] and timed Petri nets, timed
automata [148], state charts [45] and finite state machines [466] have their DEVS
equivalents. This permits sharing information at the level of the model, and different
submodels can be specified using different techniques, while keeping independence
at the level of the execution engine. In this way, we count with a mathematical frame-
work that can be used to describe different modeling techniques and prove properties
about general aspects of the system, while having a general method for sharing model
information using different approaches, and being able to apply the right technique
to each part of the application development process.

CD++ [449] is M&S software that implements DEVS theory with extensions
to support real-time model execution [150]. CD++ was used as the base for our
development, building on previous research focused on real-time applications with
hardware-in-the-loop [273]. We will discuss how to use this framework to incremen-
tally develop embedded applications, and to seamlessly integrate simulation models
with hardware components. Initially, we develop models entirely in CD++, and we
replace them with hardware surrogates at later stages of the process. Our approach
does not impose any order in the deployment of the actual hardware components,
providing flexibility to the overall process. The use of DEVS improves reliability (in
terms of logical correctness and timing), enables model reuse, and permits reduc-
ing development and testing times for the overall process. Consequently, the devel-
opment cycle is shortened, its cost reduced, and quality and reliability of the final
product is improved.

2 Background

The DEVS formalism [465] is M&S framework based on dynamic systems the-
ory. DEVS is an increasingly accepted framework for understanding and support-
ing the activities of modeling and simulation. It is a sound formal framework based
on generic dynamic systems, including well-defined coupling of components, hier-
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archical, modular construction, discrete-event approximation of continuous system,
and support for repository reuse. A real system modeled with DEVS is described
as a composite of submodels, each of them being behavioral (atomic) or structural
(coupled). A DEVS atomic model is informally described in Fig. 1.

Fig. 1. Informal description of an atomic model

A DEVS atomic model is formally described as:

M = 〈 X , S, Y, δint, δext, λ, ta 〉

Each atomic model is seen as having an interface consisting of input (X) and
output (Y) ports. Every state (S) in the model is associated with a time advance
(ta) function, which determines the duration of the state. The model will be in the
state s during ta time units. The time advance is a function in the domain of the
real positive numbers (including zero and infinity). Once this time is consumed, an
internal transition is triggered. This involves two actions: first, the model execution
results are spread through the model’s output ports by activating the output function
(λ). Then, the internal transition function (δint) is fired, producing a state change.
Input external events are collected in the input ports, which have room for only one
input, and are cleared immediately after being processed. The input ports will only
receive input events for the current event time, and the external transition function
(δext) specifies how to react to those inputs.

A DEVS coupled model is composed of several atomic or coupled submodels, as
seen in Fig. 2.

Coupled models are defined as a set of basic components (atomic or coupled),
which are interconnected through the model’s interfaces. The model’s coupling de-
fines how to convert the outputs of a model into inputs for the others, and to input-
s/outputs to the exterior of the model. A DEVS coupled model is formally defined
by:

CM = 〈 X, Y, D, {M d | d ∈ D}, EIC, EOC, IC, select 〉
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Fig. 2. Informal description of a coupled model

A coupled model groups several DEVS’s into a compound model that can be re-
garded, due to the closure property, as a new DEVS model. A coupled model is com-
posed by a set (D) of basic models (i.e., atomic or coupled) interconnected through
their interfaces (X,Y ). When external events are received, the coupled model has
to redirect the inputs to one or more components. Similarly, when a component pro-
duces an output, it may have to map it as an input to another component, or as an
output of the coupled model itself. Mapping between ports is defined by the EIC,
EOC, and IC sets, which define how to convert the outputs of a model into inputs for
others. EIC defines how external inputs are routed to the subcomponents; EOC de-
fines how outputs of internal subcomponents are routed outside the coupled model;
and IC takes care of the internal couplings. select is the tiebreaker function, which
defines an order over the components.

3 The CD++ Toolkit

CD++ [449] is a modeling tool that was defined using the specifications presented
in the previous section, and the basic execution techniques introduced in [465]. The
toolkit includes facilities to build DEVS models. DEVS atomic models can be pro-
grammed and incorporated into a class hierarchy programmed in C++. Coupled mod-
els can be defined using a built-in specification language. CD++ is built as a class
hierarchy of models related to processing entities. DEVS atomic models can be pro-
grammed and incorporated into the Model basic class hierarchy using C++. A new
atomic model is created as a new class that inherits from the Atomic base class.
Atomic is an abstract class that declares a model’s API and defines some service
functions the user can use to write the model.

Defining models in C++ provides the users with flexibility to define the model’s
behavior. Nevertheless, a non-experienced user can have difficulties in defining mod-
els using this approach. Graphical specification also improves the interaction with
stakeholders and users during system specification, while allowing the modeler to
think about the problem in a more abstract way. Therefore, we have used an extended
graphical notation to allow defining atomic model’s behavior [450, 60].
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Each model is defined by a unique identifier, and states are represented by ver-
tices (bubbles) in a directed graph. Each bubble includes an identifier and a state
lifetime.

Fig. 3. An atomic model defined as a DEVS graph

Figure 3 shows a simple atomic model defined in CD++ using this notation. The
model includes three states: A, B and C. Dashed lines represent internal transitions,
while full lines define external transitions. In this case, if the model is in state A and
it receives an external event through the rep input port (shown in the left panel), the
any function is evaluated. If the result of this evaluation is 1, the model changes to
state B. While in B, the model waits, its lifetime to be consumed. It then executes the
output function, which will send the value of the intermediate state variable counter
through the output port ok. After that, the internal transition function executes, and
the model changes to state C.

Each of the elements in the graphical notation is converted into an analytical
representation. This notation can be used both to check validity of the model and to
run these models in CD++ [450].

[modelname] defines the atomic or coupled model name, which will be used
subsequently. Model states are declared as: state: state1 state2 ... .

States are associated to a time advance value. This attribute is initialized with the
name of the object and the list of valid attributes for that object, as follows: state1 :
time-expression.
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One of the states must be declared as the initial state of the model: initial: state-
name. Then, I/O ports are declared as follows:

in : inport1 inport2 ...
out : outport1 outport2 ...

Temporary variables are declared by:
var : var1 var2 var3 ...

In addition, they can be optionally initialized as:
var1 : value1
var2 : value2

The internal transitions use the following syntax:
int : source destination [outport!value]* ( { (action;)* } )?

External transitions are defined using the following notation:
ext : source destination EXPRESSION ( { (action;)* } )?

Once an atomic model is defined, it can be combined with others into a multicom-
ponent model using a specification language specially defined for this purpose. The
user must define the coupling information, and CD++ will generate an analytical
specification that can be used for execution. The coupled model at the higher level is
always named [top]. Four properties must be configured: components, output ports,
input ports, and links between models. The following syntax is used:

Components: name1[@atomicClass1] name2 ...
Out: portname1 portname2 ...

enumerate the model’s output ports (optional clause), and
In: portname1 portname2 ...

enumerates the input ports (optional clause).
Link: source[@model] destination[@model]

describes the internal and external coupling scheme. If the name of the model is not
included, the default will be the coupled model currently being defined.

Figure 4 shows a sample coupled model describing an Ethernet switch presented
in [451].

The top model here is composed of three coupled models (server1, server2, and
client) and one atomic component (eth, an instance of EthernetSwitch). client is com-
posed of two atomic components (clientNet and hsclient) and one coupled compo-
nent (WSclient). The input and output ports define the model’s interface, and the
links between components define the model’s coupling. The input ports in the top
model (e.g., eth_enable, eth_disable, hss1_start) are used to activate and deactivate
the Ethernet switch, server nodes, and client. The output ports (e.g., status, packets)
are used to inform the progress of the system.

Models developed in CD++ are independent of the engine in charge of driving
their execution. At present, CD++ is able to execute models in single processor,
parallel, or real-time mode. The execution engine uses the model’s specifications,
and it builds one object to control each component in the model hierarchy. These
objects communicate using message passing, and they are called processors. There
are different types of processors according to the activity they carry out: simulators
are specialized in atomic models (executing its associated functions), coordinators
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components: server1 server2 client eth@EthernetSwitch
in: eth_enable eth_disable
in: hss1_start hss1_stop hss2_start hss2_stop
...
out: packets status
link: server_out@serv1 in1@eth
link: out1@eth server_in@serv1
...
[eth]
delay: 00:00:01:000
node_1: 1 node_2: 2 node_3: 3

[client]
components: WSclient clientNet@Network
components: hsclient@HSClient
in: hs_start hs_stop client_in
out: client_out
link: hs_start start@hsclient
...

Fig. 4. Definition of the Ethernet DEVS coupled model in CD++

manage coupled models, and the root coordinator controls global execution aspects
(time, start/stop, interfacing with the environment, etc.).

Fig. 5. RT-CD++ execution scheme
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RT-CD++ [150] uses the real-time clock to trigger the processing of discrete
events in the system. Thus, the same models used for simulation can be later used for
execution in real time. Figure 5 outlines the processor’s hierarchy generated by RT-
CD++ to execute the model. The root coordinator created at the top level manages
the interaction with the experimental frame that tests the model receiving inputs (via
eth_enable, eth_disable, hss1_start, etc.), and returns outputs (via status and pack-
ets). The root coordinator exchanges messages with its children. Coordinators are
created to handle the coupled models server1, server2, client, etc. Simulators are cre-
ated to handle the components eth (which inherits from the atomic EthernetSwitch),
clientNet (from atomic Network), hsclient (from atomic HSClient), drvserv1 (from
atomic Driver), etc.

Model execution is triggered by the real-time clock using the time of the exter-
nal events. When the root coordinator receives a new event, it forwards the message
to the corresponding processor. Timing constraints (deadlines) can be associated to
each external event. When the processing of an event is completed, the root coordi-
nator checks if the deadline has been met. In this way, we can obtain performance
metrics (number of missed deadlines, worst-case response time).

We thoroughly tested the execution performance of RT-CD++ [151], using DE-
VStone, a synthetic benchmark we created to study the performance of DEVS-based
simulators [152]. We conducted performance analysis using DEVStone to study the
overhead of the real-time engine in CD++. These studies showed that models with
more than 50 components execute with an overhead below 2%. For larger models
(over 200 components), the overhead incurred by the tool is below 3%, which is
reasonable considering the complexity of the tools.

4 Incremental development of a DEVS Simulation Model

In this section, we show how to develop incrementally a model based on simple
components. The application executes in a simulated environment (i.e., all of the
components remain executing in a virtual world). We have built a simulation model
integrating components of a radar system [282]. The first stage in the definition of
this example consisted of building a model to examine the synchronization effects
between radar receivers and transmitters. When using a scanning radar receiver, the
interception of radar signals can be severely limited if the scan rate of the receiver be-
comes synchronized with a radar transmitter. Every effort must be made to generate
a receiver scan pattern that limits this effect, as it seriously degrades the probability
of intercept (POI) for the receiver.

Synchronization occurs when a particular transmitter sends out radar pulses pe-
riodically, with the receiver scheduled to scan periodically in such a manner that the
receiver is never “listening” when the transmitter is transmitting. This can lead to the
transmitter not being detected by the receiver, even though it may be transmitting.
The sequential operation of the receiver that defines the tuned frequency, listening
time, azimuth, and beam width are specified by a “scan pattern”. Receivers can com-
municate with each other, with each receiver notifying the other receivers about radar
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transmitters that have been detected. Each receiver is connected to a simple commu-
nications bus, and it maintains a tracking table containing all the information about
the currently known transmitters. In order to analyze the behavior or this system, we
built a DEVS model, whose structure is the one presented in Fig. 6.

Fig. 6. Structure of the radar Tx/Rx model

The first step was to identify and define each one of the model components.
Once they were identified, a DEVS atomic model was built for each subcomponent.
Below, we exemplify the definition of one of these models by showing the tracking
table atomic model. The tracking table model is responsible for maintaining the list
of transmitters that are “known” to the local receiver.

Tracking Table = 〈 S, X, Y, δint, δext, ta, λ 〉

S = { Receive_Update_From_Bus, Wait, New_Signal_Detected,
Send_Update_To_Bus, Notify_New_Freq }
X = { signal_props, bus_receive_freq, bus_receive_id }
Y = { bus_send_freq, bus_send_id, new_freq }
δint = { δint(Receive_Update_From_Bus) = Notify_New_Freq,
δint(Notify_New_Freq) = Wait,
δint(New_Signal_Detected) = Send_Update_To_Bus,
δint(Send_Update_To_Bus) = Wait }
δext= { δext(Wait, signal_props) = New_Signal_Detected,
δext(Wait,bus_receive_freq) = Receive_Update_From_Bus }
ta = { ta(Receive_Update_From_Bus) = UPDATE_TIME,
ta(New_Signal_Detected) = PROCESS_TIME,
ta(Send_Update_To_Bus) = BUS_TIME,
ta(Notify_New_Freq) = NOTIFY_TIME }
λ(S) = {λ(New_Signal_Detected) = (bus_send_freq,bus_send_id),
λ(Receive_Update_From_Bus) = new_freq }
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This model evolves through different states (S): receive an update from the bus, wait,
detection of a new signal, transmission of an update to the bus, or notification of
a new frequency. The model changes from one state to the other by executing the
transition functions. As seen in the external transition (δext), from a wait state, the
tracking table receives information from either the local receiver (signal props, one
of the external input events) or the communication bus (receive freq). If the local
receiver detects a new signal, the signal is appended to the local tracking table, and
an update is sent over the bus for use by any remote tracking tables. If the local
tracking table receives an update from the bus, it appends the information to the
local tracking table and notifies the local receiver. The tracking table then returns to
a wait state.

Each of the models was built using CD++ and thoroughly tested, and they per-
formed as described in their conceptual model specifications [282]. A problem with
the specification of the network receiver was revealed while testing (the tracing of
the signals that were received by the network receivers became very difficult when
numerous signals were transmitted, and the receivers started to share information).

The use of the formal specification defining the atomic and coupled model be-
havior was very useful in debugging the models when they were implemented. The
iterative procedure of updating the formal specification, then updating the implemen-
tation, was quite efficient. Following these iterations resulted in the models matching
the specifications. Once this stage was completed, a coupled model was built, inte-
grating all of the systems’ components. The description of this model can be found
in Fig. 7.

[top]
components: tr1@Transmitter tr2@Transmitter

tr3@Transmitter netrx1 netrx2
out: notify1 notify2 notify3
Link: pulse_out@tr1 ext_signal@netrx1
Link: pulse_out@tr1 ext_signal@netrx2
...
[netrx1]
components: tt1@Tracking_Table rx1@Scanning_Receiver
in: ext_signal brf brid
out: notify bs_id bs_freq
Link: ext_signal ext_signal@rx1
Link: brf bus_receive_freq@tt1
Link: brid bus_receive_id@tt1
...
Link: bus_send_freq@tt1 bs_freq
...

Fig. 7. Coupled model definition: radar Tx/Rx
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The various atomic models contained in the previously defined coupled model
were tested using different scenarios. Table 1 shows the result of the testing scenario
for the network with a transmitter. In this case, the transmitter sends out pulses at
24 kHz, with a pulse width of 5 ms, and a pulse interval of 40 ms. Bus message
at t=20 ms. Receiver listening between 22 and 25 kHz. As we can see in the table,
the receiver gets a signal from the transmitter every 40 ms, and a bus message at
t=20ms. The bus message is ignored because it is not within the listening range of
the receiver (19 kHz, and the receiver is listening from 22 to 25 kHz). Note that the
model does not queue received pulses or bus messages. For each pulse received by
the local transmitter, a bus message is generated after a delay of 15 ms. The bus
message stays active for 40 ms.

Table 1. Testing scenario: network with transmitter

Events Outputs
00:00:20 brf 19000
00:00:20 brid 3

00:00:001 notify 1
00:00:016 bs_id 1
00:00:016 bs_freq 24000
00:00:026 bs_id 0
00:00:026 bs_freq 0
00:00:041 notify 0
00:00:081 notify 1
00:00:096 bs_id 1
00:00:096 bs_freq 24000
00:00:106 bs_id 0
00:00:106 bs_freq 0
00:00:121 notify 0

During this phase, we were able to detect a problem with the specification of the
network receiver: the signal information received by the bus was sent to the scanning
receiver, which treated it like an external signal (thus causing a second bus transmis-
sion). The specification was corrected so that signal information is not re-sent over
the bus.

Another component of the application describes the behavior of a simple vehicle,
which seeks a target. As shown in Fig. 8, the seeker acts to steer the vehicle towards
a specified position in global space. This behavior adjusts the vehicle so that its
velocity is radially aligned towards the target.

Using the hierarchy of motion behaviors defined in [363], the “Action Selection”
of the seek behavior is specified by dictating the destination location.

The model components specify the desired velocity of the vehicle. The model
rules detail the discrete motion that was implemented to simulate the effect of a de-
sired velocity on the vehicle. Multiple combinations of actual and desired velocity
could result in the same destination for the vehicle. The model was completely im-
plemented in CD++ following the previous rule specifications, and it was first tested
using a single vehicle, with different initial velocities and different desired velocities.
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Fig. 8. Informal behavior of the Seek model.

After all the rules were implemented, all possible velocities were tested in all possi-
ble desired velocities. Following that, collisions were tested using multiple vehicles.

Figure 9 displays the two state variables employed in the definition of the model.
The left-hand plane (mostly white) displays the current location and velocity of the
three vehicles. The right-hand plane describes the “desired velocity vector field” of
the vehicles. The “desired location” for all three vehicles is the center of the plane,
and the “desired velocity vectors” steer them to that point. As we can see, the three
vehicles enter from the top-right corner of the plane, and they stop when they cannot
move any closer to the “desired location”.

Fig. 9. Three vehicles seeking the desired location

The final stage of development consisted of showing how to provide interopera-
tion of these models by allowing interaction between the components. This interac-
tion is done at the level of the model, independently of the execution engine chosen
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(i.e., simulated, real time, or parallel), as the models only communicate at the level of
their interfaces. Let us consider, for instance, the existence of a new model, Radar.
The radar model is prepared to scan a cell space according to a given frequency.
Figure 10 shows how to integrate this new model with the two other models defined
earlier in this section. These three models were built independently, but they can be
easily integrated thanks to the definition of DEVS interfaces.

Fig. 10. Multimodel integration

The T/R model is used to start radar scanning activities. Upon activation, the
radar will scan the field defined by the seeker model defined earlier, and will gener-
ate two outputs: a reception signal for the T/R, and a number of operator messages
according to the values received in the field. The seeker model advances indepen-
dently of the execution of the radar, because these models are built as discrete-event
specifications, and each subcomponent progresses according its own internal time
base. Our top model is now integrated by the three original components. The model
produces outputs that can be used by the radar model. We have defined a zone in
which the cells will generate outputs (by using the out-rule definition). Finally, the
model, defined earlier in Fig. 6, includes two new input/output ports in order to pro-
vide interaction with the radar model. This model is not defined in the file, because
it has been defined as a DEVS atomic model, and we just need to define the coupling
between this model and the remaining components.

5 Hybrid Applications: An Automated Factory Model

We will now show how to incrementally build an application with components in
hardware and simulated modules. The model here represents an automated manufac-
turing system (AMS) for a factory floor. The AMS is composed of dedicated stations
that perform tasks on products being assembled, and conveyor belts transporting the
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products to/from the workstations. The production cycle is organized by a scheduler,
which will define the actions to be carried out according to the type of piece being
assembled. The scheduler determines which station (e.g., painting, baking, storage)
should receive and work on the product.

Fig. 11. Layout of the AMS

Figure 11 shows the physical layout of the AMS, which consists of four stations
and two conveyor belts to transport the products (A and B). We started by model-
ing and simulating the entire system in CD++ based on the layout presented in this
figure. The system, shown in Fig. 12, is composed of two coupled (conveyors) and
three atomic components (a controller, a scheduler, and a display). Each conveyor is
formed by two atomic models (an engine and a sensor controller).

The control unit receives events from the environment, and forwards them to the
remaining components of the system, using the previously defined coupling scheme.
The display controller handles the digital display (showing information about the
pieces in each conveyor belt), based on the signals received from the controller unit.
The controller receives input signals from the sensors and the scheduler, and deter-
mines where to dispatch each piece activating the engines of the conveyor belts. The
scheduler stores information about which stations have to work on a specific product.

Most of the logic of the controller unit is located in the external transition func-
tion, which handles the incoming events. Events received via ports station_ij repre-
sent that the product in conveyor belt j has to be sent to station i. Events received
at sensor_ij indicate that the product in conveyor j has reached station i; thus, we
can schedule the next internal transition function to activate/deactivate the engine of
the corresponding conveyor (via direction_j and activate_j). We can also signal the
display controller when the conveyor belt starts moving or a product reaches a new
station (via direction_display_j and station_display_j). Users can define the activa-
tion time for the engine, customizing its timing behavior.

Different experimental frames were applied to this model, allowing the analy-
sis of different scenarios. We started by analyzing the behavior of each submodel
independently (using the specifications for their physical counterparts) and then we
conducted integration tests. Initially, we ran several experiments using the simula-
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Fig. 12. Scheme of the AMS (entirely in CD++)

tion engine. This allowed us to identify some logical errors, which were fixed at
this stage. Later, we repeated the tests under the real-time execution engine. This
allowed us to detect problems with the model’s timing constraints in runtime. Once
fixed, these models were ready to become the actual software components of the ap-
plication, running in real time. Figure 13 shows a sample event file for one of these
experiments in the real-time environment.

Time Deadline In-port Out-Port Value
00:09:100 00:09:300 sta_3A activate_A 1
00:12:500 00:12:700 sensor_2A sta_disp_A 1
00:17:500 00:17:700 sensor_3A sta_disp_A 1
00:35:100 00:35:300 sta_4B activate_B 1
...

Fig. 13. Experimental frame for the AMS controller unit

Initially, a piece is placed in station 1 of each conveyor belt and there are no
pending events. The first event represents an activity scheduled for product A in
station 3. The event occurs at time 00:09:100, and the simulator receives it via input
port sta_3A. As a result, we expect to turn on the conveyor belt in less than 200
ms to transport the product. The second event in the list represents the activation of
sensor_2A (i.e., the product in belt A has reached the second station). In this case, we
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expect an output via port sta_disp_A before 00:12:700, informing the arrival of the
product at that station. The value of 1 represents activation of sensors and scheduling
of tasks in stations. Figure 14 shows the outputs generated by the real-time simulator
for this experiment.

Time Deadline Out-port Value
00:09:110 direction_A 1
00:09:110 00:09:300 activate_A 1
00:12:510 00:12:700 sta_disp_A 2
00:17:510 00:17:700 sta_disp_A 3
00:17:510 direction_A 0
00:35:110 direction_B 1
00:35:110 00:35:300 activate_B 1
...

Fig. 14. Outputs generated by the AMS controller unit.

As we can see, the deadlines were met in every case. For example, the first event
met its deadline, activating the engine of conveyor belt A at time 00:09:110 in the
correct direction (the value 1 via port direction_A indicates that the belt will move
forward). The third output is the result of activating the sensor at the second station
in belt A, and the following one represents the product reaching the third station at
time 00:17:510. The fifth line shows that the conveyor belt has stopped after product
A has reached station 3. The last two lines show the initial activity that generates
scheduling a job in station 4 for product B.

We used different experimental frames to thoroughly test this model, and once
satisfied with its behavior, we progressively started to replace simulated components
with their hardware counterparts. The first step was to replace the scheduler model,
and to execute it on the microcontroller. The microcontroller generates the events to
the simulated model, indicating that a product has to be sent to a given station. The
remaining components are not changed. Figure 15 shows the CD++ coupled model
specification for this version of the system.

Here, conveyor_A and conveyor_B are coupled components, whereas cu and dis
are atomic. The top model input ports are used to receive events from the scheduler
now running in the external board. Replacing a CD++ component with its counterpart
running in the external devices is straightforward, since the model interfaces are not
changed (an option in the executable engine will establish that a particular model is
running in an external device). Likewise, testing this model only requires reusing the
previously defined experimental frames. As the scheduler model was built using the
hardware specifications for the actual system, and the interfaces of the submodels
do not change, the transition is transparent. Figure 16 shows the output of a sample
execution of this model. The results obtained are the same as before, regardless of
the use of a hardware surrogate.

In this case, events generated by the scheduler running on the board are sent
to CD++. These events trigger the same activities in the model as in the simulated
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components: conveyor_A conveyor_B scheduler
cu@CU dis@Display

in : sta_1A sta_2A sta_3A sta_4A
in : sta_1B sta_2B sta_3B sta_4B
out : status_conv_A
out : status_conv_B
link : sta_1A sta_1A@cu
link : sta_2A sta_2A@cu
...
[conveyor_B]
components: sb@SensorController eng@Engine
...

Fig. 15. CD++ model: scheduler in hardware

Time Out-port Value
00:08:170 status_conv_A 2
00:19:540 status_conv_A 3
00:30:130 status_conv_B 2
00:35:140 status_conv_B 3
...

Fig. 16. Outputs for example shown in Fig. 15

environment. In Fig. 16, status_conv_A and status_conv_B show that the products in
both belts are transported to the corresponding stations.

After conducting extensive tests, we also moved the display controller to the
microcontroller. The value displayed on the digital display (which is updated by the
model running in CD++) represents the current station for each product. The display
controller and the scheduler were combined in a single application following the
previous model specifications. By simply activating the execution engine specifying
that the display controller is running in a hardware surrogate, we are able to execute
the new application without any modifications. Every time the models activate the
output ports status_conv_A and status_conv_B, the display controller on the board is
activated, showing on the LCD the current location of each product as shown in Fig.
17.

Time Out-port Value
00:27:410 status_conv_A 2
00:33:180 status_conv_A 3
00:34:390 status_conv_B 2
01:10:690 status_conv_A 2
01:15:170 status_conv_A 1
...

Fig. 17. Outputs for previous example
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The first two lines of Fig. 17 show the product in conveyor A moving from the
first to the third station. The third line shows the product in conveyor B moving
to station 2 at time 00:34:390. After station 3 finished its work on product A, the
product reaches station 1 at time 01:15:170. When the external display controller
receives new data, it displays the value (i.e., the current position of the product in
that belt) on the LCD, and then waits for more data.

The final step was to implement the complete AMS on the microcontroller. Fig-
ure 18 shows the scheme for this experimental frame, in which only the engines of
the conveyor belt are still simulated in CD++.

Fig. 18. Controller unit implemented in hardware

The model does not require any modification, and the model executing in the
microcontroller feeds the input ports activate and direction in Fig. 15.

Figure 19 shows the events generated by the model running in the microcon-
troller, which represents setting the direction, activation, and deactivation of the con-
veyor belt engines A and B.

Figure 20 shows the activation and deactivation of the belts when the requests
are received, which is the result of the activity in the microcontroller. The values
issued by the port, result_A and result_B, represent that the belt is activated to move
forward (1), reverse (2), or, be deactivated (0).
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Time Port Value
00:06:120 direction_A 1
00:06:130 activate_A 1
00:15:930 activate_A 0
00:56:800 direction_B 2
00:56:810 activate_B 1
01:01:130 activate_B 0
...

Fig. 19. Event log generated by the engines model

Time Out-port Value
00:06:130 result_A 1
00:15:930 result_A 0
00:56:810 result_B 2
01:01:130 result_B 0
01:22:720 result_B 2
...

Fig. 20. Outputs for the model in Fig. 18

6 Development Improvements

The time required to develop models in RT-CD++ is a major concern, given that
time-to-market is generally a crucial factor. Component reuse is an essential aim of
our approach. In the development of the AMS, we reused a controller unit that was
implemented for an elevator control system in a previous prototype application. We
also reused a prototype of a painting station, which mimics the procedure needed to
paint pieces placed on its working area (following a predefined sequence).

We conducted experiments in the classroom, asking students with different ex-
perience in the area to build the AMS system using different approaches. Table 2
summarizes the results of this study.

Table 2. Comparing development times for the AMS application

Beginners Experts
Manual CD++ Combined Manual CD++ Combined

Prototype 40 m/h 24 m/h 64 m/h 32 m/h 12 m/h 44 m/h
Test 28 m/h 10 m/h 38 m/h 22 m/h 4 m/h 26 m/h
# of bugs 17 2 9 2
Average time
to fix

20 min 7 min 18 min 5 min

The study was conducted with two groups of students: beginners and experts.
Different teams were given the same application to develop, both manually and using
CD++. The first line shows the average time (in man/hours) taken by the teams to
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complete the prototype. As we can see, building the application using CD++ always
improved when compared to building the same application manually (using a C++
compiler). This is due to the clear separation of concerns of the DEVS models: the
students only needed to build the models and not pay attention to any issues related to
executing those models. In the worst case (beginners), building the application using
CD++ was 40% faster. The main reason for this is related to the second, third, and
fourth lines. It is much easier to detect and fix errors using a DEVS-based approach.
Likewise, the number of errors found was considerably smaller (mainly due to the
reason that it is easy to decompose models up to the right level of abstraction, which
eases finding and fixing errors).

In the third column, we added the time taken to develop the application using
both approaches combined (which result in higher- quality software). That is, we use
a simulation tool (like CD++) to learn about the system, and then use the knowledge
gained by the simulation and experience to build the application manually. If we
compare this approach against the use of a tool like CD++ and the application of the
DEVS methodology, we obtain higher gains (27% of the original time, in the case of
an expert user of CD++). In our case, we are able to move from the simulated world
into the real-time application without changing one line of code: the application de-
veloped in CD++ and run under the simulation runtime can be later used to run the
actual application just by activating the real-time execution engine.

Note that, in this study, we did not take into consideration maintenance costs,
which, in any long-term project, take a large percentage of the resources spent in the
development cycle. Reducing the testing time would greatly improve maintenance,
and modifying models is much simpler than focusing on the application from scratch.
Simultaneously, it is easy to locate the sources for modification (anything related
to reaction to external events should be placed in the external transition function;
internal state changes in the internal transitions; and outputs in the output function).

7 Conclusion

M&S techniques offer significant support for the design and testing of complex em-
bedded real-time applications. We showed the use of DEVS as the basis for model-
driven development of these systems. The use of different experimental frameworks
permitted us to analyze the model execution in a simulated environment, checking
the model’s behavior and timing constraints within a risk-free environment. The in-
tegration of hardware components into the system was straightforward. Testing and
maintenance phases are highly improved due to the use of a formal approach like
DEVS for modeling the system’s behavior. The experiments were carried out using
CD++, a DEVS tool that has been built following DEVS formal definitions.

DEVS provides a sound methodology for developing discrete-event applications,
which can be easily applied to improve the development of real-time embedded ap-
plications. These advantages include secure, reliable testing, model reuse, and the
possibility of building models with different resolution at different levels of abstrac-
tion. Model execution is automatically verifiable, as the execution processors are
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built following the formal specifications of DEVS. Hence, the developer only needs
to focus on the model under development. The transition from simulated models to
the actual hardware counterparts can be incremental, incorporating deployed models
into the framework when they are ready.

Relying on experimental frameworks facilitates testing in a cost-effective man-
ner, allowing users to build and reuse test frames for each submodel of the system.
Since the DEVS formalism is closed under coupling, models can be decomposed
in simpler versions, always obtaining equivalent behavior. Finally, the semantics of
models are not tied to particular interpretations, thus existing models can be reused.
Likewise, models functions can be reused just by associating them with new models
as needed. For instance, we are now building an extension to the examples presented
here that will handle 10 conveyors and 20 stations. Extending the model presented
here requires modifying only the external transition function in the controller unit,
and defining a new coupled model including the new stations, while keeping the
remaining methods unchanged.
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Summary. Abstraction and platform are two of the most central concepts in MDA. To suc-
ceed with MDA means to build a clear, operational understanding of the two concepts. Two
key questions are how to express the PIM and especially its behavior, and how to deal with
implementation and platform dependent properties. In this chapter we offer some answers
based on earlier work on model-driven development and current work on model-driven ser-
vice engineering. A central aim of the latter work is to enable rapid, modular and incremental
development and deployment of collaborative services. A model-driven solution supported by
a layered execution framework is presented.

1 The MDA Idea

“The MDA defines an approach to IT system specification that separates the speci-
fication of system functionality from the specification of the implementation of that
functionality on a specific technology platform” [171].

As illustrated in Fig. 1, the central idea in MDA is that functionality and other
properties can be expressed in models that are implementation and platform indepen-
dent and then be turned into efficient implementations by means of transformations.
In this way the emphasis of systems development is shifted away from detailed im-
plementations towards more abstract models that can survive changes in implemen-
tations and platforms.

The idea to describe and analyze the functionality of a system separately from
the way it is implemented has been around since the very beginning of software
engineering and is central to most systems and software engineering approaches.
The degree of success has, however, varied tremendously, which suggests that just
adopting this idea alone is not sufficient. It appears that the language and method
used to define functionality are crucial.

The idea to automatically transform the functionality specification/description
into executable code has been around for almost as long a time, but has been slower
to materialize in practical results. Again it appears that the language and method used
to define functionality are crucial. In order to enable automatic translation, it is nec-
essary that functionality is described using a formalism with sufficient completeness,
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platform independent
model - PIM

platform
implementation

transformation

platform specific
implementation

platform model

platform specific
model - PSM

transformation

Fig. 1. MDA in a nutshell

rigor and precision. Although such formalisms have been around for more than 20
years, the general software engineering community has been quite hesitant to pick
them up, preferring to stick with less formal, more illustrative approaches believed
to be more practical.

The greatest promise of MDA is that this attitude is changing. The speed with
which industry and research now embrace MDA is astounding considering the many
hurdles that must be overcome before MDA can be turned into a mature technology.
Although the basic ideas are simple, there are lots of open issues concerning how
they may be implemented effectively and efficiently.

The platform concept is central in MDA because the main criterion used to clas-
sify models is their degree of platform independence. This raises two important ques-
tions:

(1) Is platform independence a sufficient abstraction criterion?
(2) Is the concept of a platform sufficiently precise?

As illustrated in Fig. 1, the platform concept is important not only as a target for
implementations and as an abstraction criterion, but also as input to precisely define
transformations. As pointed out on p. 119 of this book, MDA does not provide a
precise platform definition, maybe deliberately, which leaves it up to implementers
to define their understanding.

MDA is defined as a very open-ended and generic pattern. To make it practicable
it is necessary to turn the pattern into a well-defined, rigorous approach supported by
tools. This means to define the model architecture more precisely, including abstrac-
tion criteria, and to be more specific about platform properties and transformations.
The purpose of this chapter is to outline and discuss ways of doing this in the service
engineering domain. In order to put things into perspective, we first present an early
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model-driven approach and some lessons learned concerning how to express func-
tionality and deal with platform issues. We then show how similar principles may be
applied to support model-driven service engineering today and in the future.

2 Model-Driven Development anno 1993

Methods and tools for model-driven development (MDD) have been successfully
applied on industrial development projects at least since the early 1980s and possibly
earlier. In order to provide background and to clarify some important issues related
to MDD we shall have a closer look at one such method defined in 1993 [50] and
illustrated in Fig. 2. This was before the time of UML. Functionality was modeled
using SDL [224], which is a language for communicating state machines comparable
to the state machines now defined in UML 2.0. The experience gained will therefore
be applicable also in a UML setting.

Functionality specification

Implementation design

Functionality description

softwareelectronicsmechanics

Implementation

PIM’

PIM

SDL

SDL

C, C++, CHILL

SOON

PM+

Fig. 2. Model-driven development anno 1993

The main models, presented in the recommended order of development, were the
following:

• Functionality specification – a model of pure application functionality aiming to
describe logical behavior and information as clearly as possible. It is expressed
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using a conceptual abstraction based on concurrent state machines that commu-
nicate asynchronously. It allows behavior to be fully defined in terms that enable
users and developers to communicate precisely, to establish a common under-
standing, and to ensure that the functionality is correct according to requirements.
It provides a view where the system may be seen as a whole, independently of
realization platforms and technology. The behavior may be executed and ana-
lyzed to ensure that it is according to needs and without errors. In this way the
quality of the application functionality can be ensured independently of how it is
realized. In MDA terminology this was clearly a Platform Independent Model, a
PIM.

• Implementation design – an architectural description of the realization (the phys-
ical system) in terms of hardware and software components and a definition of
how the functionality is mapped into it. This is a high-level description of the re-
alization using aggregation to hide irrelevant detail. The purpose is not to define
behavior on a more detailed level since the behavior is precisely defined in the
functionality models. It serves as an orthogonal view that focuses on implemen-
tation design aspects such as distribution, hardware/software allocation and use
of middleware. Implementation design models and functionality models com-
bine to constitute the main design documentation for systems developed using
this approach. The implementation design was clearly platform specific and cap-
tured the Platform Model in MDA with additional mapping information. Figure
3 illustrates how this was expressed using the SOON notation [50].

• Functionality description – a model of the complete functionality actually im-
plemented. In most cases the implementation design decisions will have some
impact on the application functionality of the system, and contribute some func-
tionality of its own. Error handling and system operation and maintenance func-
tionality are typical examples. Such functionality depends on implementation
design decisions, and cannot be fully defined before the overall implementation
design is defined. The purpose of the functionality description is to capture the
full functionality that will be realized in a manner that can be understood, ana-
lyzed and quality assured separately from the realization. It was expressed using
SDL and normally structured to reflect the underlying physical system, but inde-
pendent of the programming language and execution platform (operating system,
middleware). It was only dependent on high-level architectural decisions, such
as distribution. It can therefore be classified as a Platform Independent Model
according to MDA. We have marked it PIM’ in Fig. 2, since it results from a
PIM-to-PIM refinement.

• Implementation – precise technical definitions of the realization in terms of the
different technologies used, such as mechanics, electronics and software. A large
number of realizations will normally be possible for a given functionality, and
the choice will depend on what properties are desired from the realization itself
(often called non-functional properties). If properly separated, a given function-
ality model will hold for several alternative realizations. Several translators exist
that generate complete, product quality, application code from SDL. The code
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can normally be optimized and adapted to different computing platforms and
hardware environments using various techniques as explained in [370].
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Fig. 3. Implementation Design using SOON: a PM+ (a platform model with mapping)

This and related approaches have been successfully applied to develop many in-
dustrial products, mostly within the telecom domain, but also automotive, aeronauti-
cal, instrumentation and other embedded applications, e.g. [17]. These applications
are characterized by complex reactive behavior running on distributed hardware and
software platforms with severe performance and real-time constraints, quite a chal-
lenging test for the MDA idea.

Although there is no PSM to be found in Fig. 2, the approach lies well within the
MDA pattern because MDA allows for several PIM-to-PIM refinements and does
not prescribe that a PSM must be made [174]. There was never a need for a PSM
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because the PIM’ and the PM+ (PM with mapping information) together provided
the information needed. Note that the PM+ here complements the functionality de-
sign and provides a high-level documentation of the platform (actually the complete
implementation architecture) without repeating information from the functionality
design. It should be possible to derive a PSM by adding functionality details to this
model, but there was never a need for that.3

3 Abstraction Criteria

MDA defines abstraction in the usual way found in the software engineering liter-
ature: to hide irrelevant detail in order to focus on the relevant. This definition is
adopted by ODP [224] as well. The problem with this definition is that it gives no
clues as to what is relevant and what is irrelevant and how the irrelevant should be
hidden. MDA gives just one clue: that the PIM should be platform independent and
therefore hide details of the platform. Clearly, platform independence is a desirable
property, but it is not sufficient. At least three other properties must also be satisfied
in order to reach the goals of MDD:

• Human comprehension. Functionality should be represented in a way that en-
ables human beings to fully understand it, to reason about it and to communicate
precisely. To this end the concepts of the language must be well defined, match
the problem domain and be easy to understand.

• Analytical power. It should be possible to reason about behaviors in order to
compare systems, to validate interfaces and to verify properties. This requires a
semantic foundation suitable for analysis.

• Realism. The language should build on concepts that can be effectively and effi-
ciently realized in the real world. This requirement is essential for two important
reasons:

(1) That it should be possible to derive efficient implementations automatically.
(2) That the functionality models may serve as valid documentation of the real

system.

Platform independence is not in conflict with any of these properties. On the contrary,
it is our experience that platform independence often is satisfied by consequence.

The first two properties, human comprehension and analytical possibilities, will
normally benefit from a conceptual abstraction. By this we mean to use a language
based on concepts that are closer to the problem domain than the implementation
domain. Conceptual abstraction means more than just hiding details. It means think-
ing differently about a problem, because the problem is formulated using other con-
cepts. Mathematical models used for performance analysis and strength calculations

3 A PSM is normally taken to contain the same information as a PIM with additional platform
specific detail. Sometimes a marked PIM is used as intermediate. The value of repeating
PIM information in PSM may be questioned. Instead one may emphasize documenting the
mapping and the additional information separately (here in the implementation design).
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are well-known examples of conceptual abstraction. While this has obvious advan-
tages, there is a danger that the chosen concepts cannot be effectively implemented,
and therefore the realism may be lost. It is therefore important to select conceptual
abstractions that are implementable in efficient ways.

The extended finite state machine is a conceptual abstraction that satisfies the
three criteria (for suitable application domains) and has proven to be useful time
and time again. Therefore it has been adopted in one form or another, by the major
modeling languages dealing with stateful reactive behavior, notably UML and SDL.

One important property of state machines is that they lend themselves to layered
implementations where the application runs on top of a state machines support layer.
In this way two benefits can be gained:

• The conceptual distance from application functionality to application implemen-
tation is shortened.

• The underlying platform may be hidden from the application implementation by
the state machine support layer, and in this way improve the platform indepen-
dence and portability of applications.

This allows the MDA to be specialized as illustrated in Fig. 4.

platform model
with mapping

abstract state machine

abstract state machine

platform
implementation

state machine support

application
implementation

refined application
model - PIM’

pure application model
- PIM

transformation

refinement

Fig. 4. MDA using abstract and concrete state machines

4 Towards Model-Driven Service Engineering

As the underlying technology gradually matures, service development or service en-
gineering is receiving more attention and starting to become a discipline in its own
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right. This has been a clear trend within telecom for years. Driven by the belief that
future revenues will have to come from new services, a tremendous effort has been
invested in new platforms, methods and tools to enable rapid development and incre-
mental deployment of convergent services, i.e. integrated communication, multime-
dia and information services delivered transparently over a range of access and trans-
port networks. Similarly, concepts like the Service-Oriented Architecture (SOA) and
Service-Oriented Computing (SOC) building on web services are being developed
for the business domain. A general challenge for service engineering, be it business
or ICT applications, is to enable service modules to be rapidly developed, and to be
deployed and composed dynamically without undesirable service interactions. This
is a formidable problem and a very challenging, yet attractive, application area for
MDA.

4.1 The Nature of Services

In the information processing domain, a service is considered as a computation or in-
formation processing operation that is accessed through an interface using a request–
response type of interaction. There may be many users accessing the service more
or less simultaneously, but initiatives come from one side only (normally from the
users). This kind of service may be provided by a client–server structure where the
server side is made up of passive objects that respond to requests without taking in-
dependent initiatives. In telecom and embedded systems, services normally involve
several active objects interacting on a more equal basis where initiatives may come
from several sides and possibly conflict. A telecommunication conference service
is a typical example. It entails collaboration between concurrently behaving, active
objects taking part in the conference, and cannot be properly understood simply as
an interface. This kind of service requires a peer-to-peer structure of interconnected
active objects [49].

The fundamental differences between these two kinds of services and object
structures have consequences for service modelling, service composition and service
platforms. Convergence means that the two kinds of structure need to be combined
and integrated. The most fundamental issue then is what kind of communication
mechanism to use in the core.

Synchronous communication by invocation is restricted to client–server struc-
tures while asynchronous communication by messaging may be used for both client–
server and peer-to-peer structures and is necessary to support general peer-to-peer
structures efficiently. It may then be argued that asynchronous communication by
messaging should be supported at the core of a mixed engineering approach. Re-
cent trends in business applications point in the same direction. Business-to-business
interactions need to be carried out on a loosely coupled peer-to-peer basis using
asynchronous communication [173]. Consequently, in order to cover a wide range of
convergent services, an approach to service engineering must support peer-to-peer
services and asynchronous communication.
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We consider a service in general to be an identified (partial) functionality, pro-
vided by a system, component, or facility, to achieve a goal for its environment. More
specifically a service is seen as a collaboration seeking to achieve some goal(s).

This definition fits well with the UML 2.0 collaboration concept. A service may
conveniently be defined as a collaboration between roles with behavior defined by
means of UML behavior diagrams such as activity diagrams, sequence diagrams and
state machines. Collaboration roles may be flexibly bound to actor objects as long as
the actor class is compatible with the role. In this way a given class may be assigned
to play several roles, and a role may be played by several different classes. The n:m
relationship between actors and roles follows from the nature of services. Separating
roles from actors provides an opportunity for flexibility and modularity in service
modeling, but also poses a challenge in service composition. Similar opportunities
and challenges exists within so-called aspect-oriented computing (p. 237).

4.2 Role and Actor Modeling – RAM

RAM is an experimental, model-driven approach to incremental service engineering.
It is being developed and applied to develop experimental services in a joint effort
between NTNU, Telenor and Ericsson [303].

An experimental service execution framework called ActorFrame [367], [287]
has been developed that directly supports some of the key concepts in RAM. In
this way the approach uses a conceptual abstraction based on roles and actors that
are supported at the implementation level by ActorFrame, which includes a support
layer for UML 2.0 state machines.

cd ActorFrame concepts

Actor

+ m yActorAddress: ActorAdd ress

+ context: ActorContext*

«m e taclass»

Class

Agent

+ m ypro fi le :

Role

«m etaclass»

Composite

*

*

Fig. 5. The main RAM concepts
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Briefly explained, the main concepts and features are as follows, see Fig. 5:

• Services and applications are performed by Agents representing and acting on be-
half of application domain entities (such as users). Agents are special Actors that
reflect the environment being served by an application system. RAM is therefore
an Agent-oriented approach according to [49].

• Services are seen as collaborations between Roles played by Actors (that may be
Agents) on a peer-to-peer basis. In Fig. 6 there are six Agents playing the Roles
of three active services: a logon service, a chat service and a call service.

• Actors may perform several Roles concurrently and contain inner Actors.
• Services require that dynamic links are created between Actors playing service

roles. An Actor’s ability to play Roles depends on its current state, what other
Roles it is playing and the policies of its enclosing Agent.

• Predefined patterns and types provide generic service functionality and support
mechanisms, e.g. a role request pattern for dynamic session initiation, manage-
ment functionality and dynamic deployment functionality.

• Service development is model driven and incremental with Role types, Actor
types and Agent types as module types.

• Executable application systems are framework based and dynamically composed
from instances of Role types, Actor types and Agent types. Figure 6 shows a
simple application system corresponding to a PIM.

• New Role, Actor and Agent types may be dynamically deployed into a frame-
work and validated.

• New types may be defined by extending Agents, Actors and Roles.
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Fig. 6. A simple PIM example

Agents are relatively stable, domain specific and service independent, while
Roles and Actors are service dependent and provide the building blocks for static
and dynamic service composition. They are all active classes in the UML 2.0 sense
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with behavior defined by state machines supporting composite states and behavior
inheritance.

4.3 Service Modeling

A detailed presentation of the service modeling approach is beyond the scope of this
chapter. We shall only outline the approach sufficiently for the MDA aspects to be
appreciated, see Fig. 7.
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Fig. 7. Service modeling overview

Service modeling begins with collaboration diagrams identifying the roles in-
volved and their associations. The diagrams may well contain collaboration uses
(previously called collaboration occurrences) representing inner sub-collaborations.
Associated with the collaboration are definitions of the service behavior expressed
using sequence diagrams, activity diagrams and other suitable notations.

The next step is to define complete service role behaviors using state machines.
The behavior of these state machines may be analyzed for internal consistency and
their visible interface behaviors, called a-roles, on all external interfaces may be de-
rived according to rules laid out in [127]. These a-roles are intended for later valida-
tion of dynamic links when the roles are invoked. They may also be used to support
service discovery and selection.

Actor types are then defined by composition of role behaviors and inner actors.
Each Actor type is defined by a UML 2.0 class diagram with inner parts and ex-
ternal associations. This diagram constrains the inner structure of roles and actors
that instances may have and also the environment where instances may be validly
instantiated. Agents are modeled in the same way as Actors. The only difference is
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that Agent instances may have externally visible identities, credentials and policies
associated with them.
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As in the approach described earlier, there is a refinement step from a pure appli-
cation model (PIM) to a refined model (PIM’). In this particular case the refinement
is needed to adapt to service enablers such as location services, map servers and Par-
lay call control services provided by the underlying service platform. The PIM’ is a
framework with two main parts, see Fig. 8:

• An application part consisting of Agents and Actors playing Roles. This part
constitutes the pure application functionality PIM.

• An adaptation part also consisting of Agents and Actors playing Roles, serving
as an adaptation layer towards the underlying service platform. This is service
platform dependent, but implementation independent.

Figure 8 also shows Edge adaptors that provide means for applications to commu-
nicate transparently over a variety of protocols with terminals and other external
entities. They serve as bridges between the internal communication mechanisms and
the external. A variety of edges are provided including web access, web services
access, JMS, and Java RMI.

4.4 Implementation and Platform Issues

A virtual machine layer called ActorFrame provides support for the RAM concepts.
It builds on a layer below that provides support for UML 2.0 state machines including
parts, ports and associations as well as behavior inheritance. This layer is currently
provided in three variants, Fig. 9:
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• ActorFrame, which runs directly over a Java VM and may be deployed on most
Java platforms including small devices and mobile terminals.

• EJB ActorFrame, which runs on J2EE platforms and is intended for application
servers.

• MIDLet ActorFrame, which runs on Java MIDLet2.0-enabled mobile phones.
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Fig. 9. Implementation layering and platform adaptation

The application code is nearly identical for the three platforms, which make’s
porting from one platform to another quite simple. The ActorFrame layer uses actor
descriptors implemented as XML files to dynamically create actor instances accord-
ing to the content and context constraints specified by the actor descriptors, see Fig.
10. New actor types may be dynamically deployed, and existing actor types may be
reconfigured on-the-fly by editing the actor descriptors. A UML 2.0 to Java transla-
tor has been developed that generates the application code and the actor descriptors
for both platforms. This allows flexibility to deploy actors and roles of distributed
peer-to-peer services on terminals and application servers as best seem’s fit.

The framework has been used to develop experimental services using the PATS
laboratory infrastructure to access live network resources over a variety of interfaces
including Parlay, Parlay-X and location servers.

Some challenges now being addressed in RAM are:

• Flexible, incremental translators.
• Incremental validation tools.
• Service naming, discovery and selection.
• Personalization and context awareness.

4.5 RAM and MDA

The overall approach is summarized in Fig. 11. Due to the conceptual abstractions
provided by state machines there has been no need for a PSM. With the code gener-
ator now in place in the RAMSES toolset [259] we are one important step closer to
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realizing our vision of model-driven service engineering. But to fully realize the vi-
sion, more needs to be done to support the incremental and compositional approach
on the modeling level. To that end we are currently working on compositional meth-
ods and tools to ensure that actors are internally consistent and that interfaces are
compatible when composed. We aim to find means to ensure consistency and com-
patibility on the modeling level that can be utilized at runtime. The runtime aspect
is important because services may be deployed, discovered and used dynamically at
runtime in combinations that have never been planned. Work is under way in this
direction based on the principles of [127] and [46].
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5 Concluding Remarks

MDA is a great initiative. It is ambitious, but clearly feasible as demonstrated through
industrial application of early MDD approaches such as the one presented in Sect. 2.
The potential benefits are easy to see if the model-driven approach is compared with
the elaboration approach that has been dominating mainstream software engineering
so far.

• In the elaboration approach functionality is normally described with insufficient
precision and completeness to be fully understood and analyzed on its own terms
or to be automatically implemented. This can often be attributed to the use of
languages with incomplete behavioral semantics. Missing functionality details
have to be added by elaboration during implementation design and realizations
to compensate for this. As a result, the realization (the source code) ends up as
the only complete view of the system and is often the only one that is maintained.
This gradually reduces the value of the other views, and makes the documenta-
tion very realization dependent. When the technology and platforms change, as
occurs rapidly these days, more than necessary must be redone, because it is hard
to factor out and reuse functionality that is not changed. Mainstream software en-
gineering has followed the elaboration approach, and this has also been the case
for most UML use, including the Rational Unified Process (RUP), before MDA.

• In the model-driven approach it is essential that functionality is modeled more
completely and with sufficient precision and realism that behavior may be fully
understood, analyzed and realized on the basis of the functionality models. The
implementation dependent information should be kept as orthogonal as possible
to the functionality, and realization of functionality may be carried out by (man-
ual or automatic) transformation of the functionality description. One important
goal is that the functionality models can remain valid for the realization and serve
as documentation. Another goal is that functionality models can survive technol-
ogy and platform changes, and thereby give better return of investment, which is
desirable, since functionality tends to have a longer life than realizations.

Figure 12 serves as a suggestive illustration of the two approaches. The first thing to
note is how the effort pyramids are inverted. In MDD relatively more effort is spent
on functionality models and implementation design than on implementations. This
means that more effort is invested where the potential return’s on investment in terms
of quality and lifecycle cost are higher. Since functionality is expressed using formal
languages, the quality of functionality can be assured separately from the quality of
realization. Provided that the realization of functionality is automatically generated,
the testing may concentrate on non-functional properties like performance and re-
sponse times. An important point illustrated in the figure 12, is that the functionality
description need not be changed if the execution platform or programming language
is changed. When using the MDD approach, it is sufficient to change the implemen-
tation design and realization. The functionality description can be reused and thereby
provide a better return on investment than possible when using the elaboration ap-
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proach. In the MDD approach the viewpoints/aspects are well separated, while in the
elaboration approach the separation is often not so clear.

a) Elaboration

Functionality

Implementation

design

Implementation

Initial

development

New

service

New

realization

Functionality

Implementation

Implementation

design

b) Model driven

Effort spent

Fig. 12. Effort pyramids for the elaboration approach and the MDD approach

Among the many problems needing to be solved on the way towards MDA the
following are perhaps the most challenging:

• Flexible and powerful translators (p. 19 of this book).
• Platform adaptation and optimization.
• Incremental and dynamic service composition.

Two factors seem especially crucial:

• How the PIM is expressed and especially how its behavior is expressed.
• How the implementation and platform dependent information is added, e.g. ex-

pressing the PM+ (implementation design) and making tools obey it.

In this chapter we have presented some possibilities enabled by using state machines.
State machines are clearly not the solution to all application problems, but their ap-
plication area is expanding as gradually more applications become distributed and
collaborative with stateful peer-to-peer behavior. Web service orchestration is one
new area where state machines can fit in.
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Summary. There has been much discussion about the role and importance of model-driven
development (MDD) and Model-Driven Architecture (MDA) as a way to improve the produc-
tivity and quality of enterprise application development. However, few documented experi-
ences with the use of MDA styles of development are available. This paper provides a set of
practical lessons derived from the design and use of an MDA toolkit at IBM. We describe the
MDA Toolkit and its use, and highlight the key lessons in the use of an MDA approach from
these experiences. We conclude with some observations on the MDA approach in general, and
a brief discussion of follow, on work we are undertaking as a result of our experiences.

1 Introduction

Software development is an iterative process of understanding, discovery, and de-
sign. An increasing understanding is obtained through the application of techniques
that help us discover more about the problem domain that provides the basis for the
design of solutions that address the concerns of a defined set of stakeholders in the
context of a set of solution delivery constraints. Throughout this process many dif-
ferent kinds of information must be captured, analyzed, refined, and communicated.
Models, supported by modeling techniques and tools, help to enable this process.

The Unified Modeling Language (UML) is the standard modeling notation for
software-intensive systems [225]. Originally conceived over a decade ago as an in-
tegration of the most successful modeling ideas of the time, UML is widely used by
organizations, and supported by more than a dozen different product offerings. Its
evolution is managed through a standards process governed by the Object Manage-
ment Group (OMG). One of the reasons for the success of UML is its flexibility. It
supports the creation of a set of models representing both the problem domain and
solution domain, can capture and relate multiple perspectives highlighting different
viewpoints on these domains, enables modeling of the system at different levels of
abstraction, and encourages the partitioning of models into manageable pieces as
required for shared and iterative development approaches. In addition, relationships
between model elements can be maintained across modeling perspectives and levels
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of abstraction, and specialized semantics can be placed on model elements through
built-in UML extension mechanisms (i.e., stereotypes and tagged values bundled into
UML profiles).

As a consequence, UML is often the basis for system and software design ap-
proaches that encourage model-centric styles of development. Users of UML for
modeling are supported by well-established methods that offer a set of best prac-
tices for creating, evolving, and refining models described in UML. One of the most
well known is the IBM Rational Unified Process (RUP). The RUP describes a de-
velopment process that helps organizations successfully apply a model-driven de-
velopment (MDD) approach [262, 261]. It introduces important practical techniques
to the creation, evolution, and maintenance of models, focusing on how teams of
practitioners working on a large-scale development effort can reduce technical and
developmental risk in a project, produce models of high fidelity, and ensure that the
different models are appropriately synchronized.

Organizations have been successfully using UML in the context of RUP-based
best practices for some time. Surveys indicate that almost 40% of developers use
some modeling approaches based on UML, and the market-leading tool supporting
UML, IBM Rational Rose, has cumulatively sold in excess of 250000 licenses [71].

As investment in these models has increased, some organizations have begun au-
tomating many of the model transformation aspects of an MDD approach. In effect,
they have been using the UML/RUP/Rose combination as a platform on which to
build their own model-driven approaches – writing RoseScript to manipulate models
in IBM Rational Rose, or building external utilities for manipulation of the mod-
els that IBM Rational Rose externalizes in the eXtensible Markup Language (XML)
Model Interchange format, XMI. In some cases customers have significant invest-
ment in these layers as a way of capturing their organization’s best practices for
modeling and model transformation.

A particular approach to MDD has been standardized by the OMG. The Model-
Driven Architecture (MDA) approach that they have defined focuses on the creation
of models using UML, and the transformation of those models between different
levels of abstraction. This has led to products that support the creation, management,
and sharing of such transformation. Commercial products such as Codagen [66] and
arcStyler [265], and open source efforts such as AndroMDA [18] and OpenMDX
[2], augment the capabilities of modeling tools such as IBM Rational Rose to support
MDA and ease the creation, management and application of these transformations.

In this paper we examine MDD approaches from the perspective of the design
and use of a toolkit for MDA at IBM. We describe the rationale for the introduc-
tion of this toolkit, explore its key capabilities, and highlight many of the important
lessons in the application and use of a model-driven style of development based on
use of this MDA toolkit in a number of customer situations. We then comment on the
adaptation of traditional software lifecycle practices in regard to MDA approaches
and make a number of general observations on the successful application of model-
driven approaches in practice. Throughout the paper we assume a general familiarity
with the Object Management Group’s MDA approach, and a background in model-
ing using UML. Many introductions to these topics are available elsewhere.
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2 The MDA Toolkit for IBM Rational XDE Java

2.1 Motivation

With the introduction of IBM Rational’s next generation modeling environment in
2002, IBM Rational XDE, it was important to offer appropriate support for model-
driven styles of development with that product. Since its introduction, the principal
mechanism for producing custom automation in IBM Rational XDE has been the
executable patterns mechanism. This mechanism allows developers to create and
design executable patterns as visual models. A pattern developer uses IBM Rational
XDE to create diagrams and model elements within a “pattern” element. The pattern,
itself a stereotyped UML model element, could then be executed in other parts of the
model or in other models. The mechanism essentially makes the specified part of the
target model look like the pattern.

This type of transformation engine is inherently declarative. That is, within a
diagram a structure of model elements is constructed. Elements and properties of
those elements are parameterized. This is inherently a declarative style of transfor-
mation mapping. Conditional and procedural elements in the pattern are expressed
with code in special “callouts”. The callouts are simply callback functions that are
executed during special steps in the execution of the pattern.

Our initial attempts at using the patterns mechanism to implement large-scale
MDA style transformations, where entire models are processed in a batch-like oper-
ation, were disappointing. While complete and fully functional, we found in practice
that the performance suffered, especially as more algorithmic complexity was added
to the transformations. This highlighted our emerging opinion that although they
are relatively easy to define and understand, declarative-style transformation mech-
anisms such as the executable patterns mechanism in IBM Rational XDE were not
suited to the large-scale MDA style of transformations we were trying to build.

Our conclusions are that the patterns mechanism is best suited to small-scale
transformations on discrete, individually selected model elements. Patterns are also
most efficient when the transformation mapping is mostly declarative. The more al-
gorithmically complex the transformation mapping is, the less suited a visual, exe-
cutable patterns mechanism is. We recognized that what was needed was a more scal-
able approach to implementing MDA-style transformations, an approach that could
handle the increased algorithmic complexity, and that would scale to support trans-
formations involving large models.

It was these driving factors that led to the creation of the “MDA Toolkit for IBM
Rational XDE Java”. This toolkit’s main goal is to make it practical to develop large-
scale MDA-style transformations that use and manipulate UML models created with
IBM Rational XDE.

2.2 Key Aspects of the MDA Toolkit

The MDA Toolkit for IBM Rational XDE Java provides a framework for a trans-
formation author to develop and deploy MDA-style transformations involving UML
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models.1 Toolkit-created transformations are inherently procedural since they are,
for the most part, Java code. Unlike the visual, executable patterns mechanism, most
of the work creating an MDA Toolkit transformation is in the development of code
that directly manipulates the models and other artifacts that participate in the trans-
formation. This approach to transformation development is simple and efficient for
handling arbitrarily algorithmically complex transformation mappings.

The toolkit provides a special application programming interface (API), layered
on top of the base model access API that provides many commonly used features in
MDA transformations. Most UML model APIs provide only the most basic model
access functionality (get, create, and update model elements and properties). It has
been our experience that when developing MDA transformations involving manip-
ulation of UML models, additional higher-level functionality is key to making the
transformations robust, scalable, and maintainable. The MDA Toolkit provides an
API for model access (an MDA API) that includes high-level functionality such as:

• Intelligent and deep copying of model elements. Copying model elements (espe-
cially when the elements can be containers or when they have relationships to
other elements outside of the container) requires many discrete decisions to be
made. Optional parameters to a copy method determine how relationships and
sub-elements are copied. Relationships can be copied relative to the elements on
their ends, or one end can be copied and the other remain fixed (i.e., a relation-
ship to shared framework object). The toolkit’s intelligent copy methods offer a
callback mechanism to help resolve names.

• Language specific behavior. Approaches to comparing elements such as names,
or operation signatures, can vary with the target language. For example, in differ-
ent target programming language an operation that searches for or creates named
model elements requires a target-language specific approach toward handling
upper- and lowercase characters. Similarly, when comparing operations for lan-
guages like C++ or Java the operation name alone is insufficient, and operations
are compared with each other by their signatures which only recognize the list
of argument types, not names or return values. The ability to have the API for
model access by default understand and behave with these rules makes working
with the model significantly easier.

A principal design goal of the MDA API was to develop an inherent behavior
in the API that supports the idea of iterative and repeated transformation invocation.
We have found that most uses of an MDA transformation occur in a process where
the transformation is re-executed multiple times in an iterative development process.
Therefore, it is critical that any artifacts modified by the transformation preserve all
information that is not directly linked to the originating elements of the transforma-
tion. For example, a transformation that converts an abstract UML class to a Java
class, where the source file already exists and contains a number of helper attributes
and methods, should not remove any existing code during repeated transformations.

1 Further details on the MDA Toolkit for IBM Rational XDE, including access to the down-
load, are available at http://www.ibm.com/rational/mda/toolkit.html.
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2.3 The Role of UML Profiles

The MDA toolkit includes tools for creating and refreshing UML profiles. We have
found that custom UML profiles are used in most transformations that involve UML
models. Profiles play two different roles in a typical MDA transformation. They can
be a “semantic profile” in which they are used to enable the model to accurately and
appropriately capture and express specific information. This is the classical use of a
UML profile: to define a set of semantics with which to interpret a model. However,
they can also be used as a “marking” mechanism. Marking a model, in OMG MDA
terminology, means tagging a model with extra information that is used by tools,
and that is not appropriate to be captured in the semantics of the model. This is
information that is not within the domain of the level of abstraction of the model
content itself, but information that is necessary for an automated transformation to
complete its tasks.

The toolkit includes an authoring and runtime component. The authoring com-
ponent enables UML profile creation and includes a project creation wizard (with
sample code). The authoring component is only required in those workstations used
to create new custom MDA transformations. The runtime includes the MDA API
which provides the high-level MDA functionality on top of the basic model access
API, and is a shared component that is required on every machine that invokes MDA
transformations.

2.4 Packaging and Delivering MDA Toolkit Transformations

Transformations created with the toolkit are packaged as Eclipse plugins making
the developed transformations easy to deploy to development teams. The toolkit in-
sulates the transformation developer from most of the details of creating Eclipse
plugins, so they can focus on developing the transformation itself.

The toolkit manages most of the details of the Eclipse plugin project, including
the user interface and cached preferences, thus freeing the transformation developer
to focus on implementing the actual transformation logic. Once a transformation
and any required custom UML profiles are created and ready for deployment, they
are packaged as an Eclipse feature and made available on an internal intranet or
website. Each developer installs the desired transformations and dependent plugins.
Once these are installed, the developer has a new menu item and set of default pref-
erences that when invoked prompts the developer for the required parameters before
invoking the transformation itself.

All the detailed transformation logic in the mapping is encoded in and executed
with the downloaded transformation. This alone is not sufficient to ensure that any
given transformation is going to be used correctly. Therefore, most well-constructed
transformations will include new sections to be added to the Eclipse online help.
These sections should document when, why, and how a transformation should be
invoked. Of course, in every environment where automation is being introduced the
process should be updated and communicated accordingly.



408 Alan W. Brown, Jim Conallen, and Dave Tropeano

The MDA Toolkit for IBM Rational XDE Java was made available late in 2003,
and has been used in a variety of customer situations. Our experiences in the design
and application of that toolkit have reinforced much of our earlier work, and high-
lighted a number of critical lessons for anyone interested in the practical application
of MDA.

3 Lessons in the Design and Application of MDA Solutions

Over the past few years there have been a number of organizations using MDD, in-
cluding use of model transformations. In fact, the authors of this paper have been
directly and indirectly involved in developing models for large-scale systems, build-
ing model transformations, designing MDA tools, and using MDA tools on a number
of customer engagements. As a result, a set of best practices for developing MDA-
style solutions can begin to be distilled based on these experiences.

While each customer situation has its own particular concerns, we have found
that there is a consistent set of steps that is followed in creating MDA solutions.
Briefly, the steps followed when developing MDA style automation are:

(1) Examine the models currently used in the development process, and the semantic
connections between elements across abstraction boundaries.

(2) Identify candidate transformations for automation.
(3) Specify (document) the transformation requirements.
(4) Create the necessary UML profiles.
(5) Develop the transformation code.
(6) Draft usage documents, package, and deploy.

These steps form the basis for a variety of MDA projects, and, when coupled
with typical iterative design and risk-reducing development practices, offer a robust
MDA approach. Most importantly, from our experiences applying these steps, a set
of heuristics can be distilled that offer a set of lessons for those practicing MDA. We
now examine those lessons in detail.

3.1 Semantic Model Connections

Lesson 1. Develop transformations only when the semantic connections between the
model elements are well understood.

Before any attempt to introduce automation in the development process, you
must acquire a full and thorough understanding of all the models used and managed
in the process. Too often, development efforts begin with the creation of useless mod-
els, just because the untailored development process or method states that they are
needed. Unless the models being developed during a software project provide clear
and useful information to the effort, they should not be created or maintained. Simi-
larly many projects are often missing some key models and abstractions that connect
various parts of the system. Whenever it is apparent that a significant amount of
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human interpretation and creativity is employed in any particular part of a project,
there might be a need for a formal model to capture the thought processes and design
decisions made during those activities.

The semantic connection’s between elements in models across abstraction bound-
aries are of particular interest in the context of MDA. Most of the practical activity
around MDA today involves the automation of transformations, particularly transfor-
mations of information from models at higher level’s of abstractions and model’s at
lower abstractions. Typically, connections like this “fan out”; that is, a single model
element at a high level of abstraction (i.e., use case) is connected to multiple model
elements (i.e., boundaries, entities, and controllers) in lower-level models.

The traceability of these connections is important for a number of reasons, the
most important of which is to support automated transformations. But it also has
important significance in iterative development environments where any given trans-
formation is likely to be invoked many times.

It has been our experience that a transformation is rarely just a simple matter
of moving information from one input model to one output model. More typically
there is one primary input source, with a few extra general purpose parameters, and
a set of output models. For example, in a typical J2EE system, an analysis model
contains information that is transformed into a database design, Java interface and
object design, a set of Java Server Pages (JSPs), and a number of configuration or
deployment descriptors. All of these more detailed models must be synchronized to
execute properly. Therefore it is often most convenient to develop a single transfor-
mation that manages the transfer of information from the primary high-level source
model to the set of low-level models, rather than developing separate transforma-
tions for each combination of input and output models. It is this ability to coordinate
the semantic content across various low-level models that makes MDA an attractive
technology.

Furthermore, an important property of a transformation in this scenario is the
ability for it to be executed and only update those elements of downstream models
that are directly dependent on the upstream ones. Any additional information cap-
tured in the detailed models that was not generated by the transformation in the first
place should remain intact. Additionally, model elements created by the transforma-
tion should not be duplicated in the downstream models during each invocation, only
updated (or created if not present in the model). The MDA Toolkit API is structured
so that transformations inherently follow these design principles.

3.2 Identify Candidate Transformations

Lesson 2. Not all semantic connections make for good MDA transformations.

When tight semantic connections are identified between elements in models they
should be examined to see if the rules governing their relationships are suitable for
automation. A suitable transformation can only be implemented when these rules are
clear and unambiguous. They may be large and complicated, or they can be trivial
and simple – in either case it may be appropriate to investigate authoring a transfor-
mation to implement them; however, if the rules that define these connections, and



410 Alan W. Brown, Jim Conallen, and Dave Tropeano

subsequently the rules for constructing new elements in the other models, require
developer experience or judgment, then automation can be easily ruled out.

Another reason to rule out automation is the inability to programmatically access
the necessary elements of the models themselves. For example, most transformation
steps that involve the reading of natural language documents, regardless of the level
of formality in them, are typically not suited to MDA-style automation. As an illus-
tration, we usually find that transforming a use case specification document into an
analysis model is generally not practical. However, transforming a UML sequence
diagram, or activity that accompanies a use case, might be suitable for automation
(given the rigor under which is was constructed).

3.3 Document Transformation Requirements

Lesson 3. Writing MDA transforms should be treated as a software development
project itself.

The most useful transformations automate tasks that are either too tedious or
complex to rely on a developer to consistently and reliably implement. MDA au-
tomation ensures consistency and in most cases significant time savings. It is not
surprising that most successful transformations are in fact non-trivial examples of
software. When considering the use of MDA automation, and the creation of non-
trivial transformations, it should be treated as a separate software development in
itself.

A transformation, especially one created with the MDA Toolkit, is an example of
custom software. The requirements should be clearly understood (Lesson 1) and ex-
amined both semantically and technically. The bulk of the requirements specification
is in the mapping document. The mapping document describes in detail the semantic
connections between the modeling elements in the various models participating in
the transformation. Other pertinent requirements may include performance, security,
scalability, etc.

Most of the transformations that we have been involved with were implemented
with a number of classes, and as a result underwent an analysis and a design phase.
Other practical issues such as testing, deployment, and training also have their paral-
lels in the classic software development process. While most typical MDA transfor-
mations do not require a large team to implement, they should at least be treated as
an independent software development effort to ensure completeness and quality.

When specifying the requirements for a transformation implemented with the
MDA Toolkit there are three distinct behaviors that should be considered:

• Validation of input parameters (and their content) for required and consistent
information.

• Execution of the core transformation logic/mapping.
• Verification of the semantic connections between the model elements that partic-

ipated in the transformation.
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The execution of the transformation’s logic and the modification of the down-
stream models represent the most important work of the entire transformation. How-
ever, the validation of input and verification of successful completion are also impor-
tant in an iterative development environment.

Lesson 4. Validate the integrity of all parameters and artifacts participating in a
transformation before executing it.

Since almost anything can be invoked and executed in an MDA Toolkit-created
transformation, there is no inherent transactional process monitoring. That is, there
are no facilities to guarantee that a transformation begun and then aborted before
completion will result in the reset of all input parameters to their previous state.
This is because the MDA Toolkit does not limit or restrict the types of artifacts that
can participate in a transformation. It is perfectly possible for the invocation of a
transformation to invoke external web services, or modify artifacts in a permanent
way. It is generally up to the transformation developer to ensure the integrity of the
artifacts that are manipulated in a transformation. As a result it may be necessary to
ensure that the input set of artifacts is in a known state (i.e., all required parameters
are specified, expected profiles applied to models, and expected content in models
are verified artifacts) before the transformation takes place. This is also useful when
the transformation takes a long period of time to execute (it may not be unusual for
a transformation to execute over a period of hours if it is particularly complex and
works on large resources). If the parameters (or any of the participating artifacts)
can be determined to be invalid early on it can save user time, and preserve artifact
integrity.

Lesson 5. A verification specification is required to maintain the transform’s in-
tegrity in light of downstream changes.

When the transformation becomes part of an iterative development process it is
likely that even after a transformation is executed, the artifacts, both input and output,
will be manually updated. This follows the general MDD philosophy that changes
are first introduced to the system in the models with the most appropriate level of ab-
straction, regardless of abstraction level. For example, a Customer entity described
in a high-level analysis model might not contain information about persistence strat-
egy information (optimistic, pessimistic, etc.). So changes to this strategy need not
be introduced into the analysis model, but rather in the design model where they
would have most impact. Consequently, the addition of a new key attribute to the
Customer class would probably require a change directly to the high-level analysis
model. When appropriate, and after a possible evaluation, this change would be re-
flected as appropriate to lower-level models, possibly as the result of an automated
MDA transformation.

Because iterative development processes encourage the evolution of models
throughout the development process, an important feature of a good automated trans-
formation is the ability to analyze the current state of artifacts and compare them to
what would be expected if the transformation was to execute with them. This step is
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encouraged in MDA Toolkit transformations with a separate and distinct verification
step. The verification step is typically run separately, after the downstream artifacts
have undergone not only the transformation, but subsequent modification. In a typ-
ical scenario a developer would use a transformation to update or create a set of
models or code with new information in the abstract model. Then, those downstream
models and artifacts might undergo further refinement that is not related to any se-
mantic information managed by the transformation process. During this refinement,
it is possible (although undesirable) for changes to be made that break the expected
semantic connections between the models. Explicitly executing the verification of a
transformation will produce a report to the developer of any breaks in the semantic
mapping established by the original transformation. These may then be addressed
appropriately by the developer, resulting in a change to either the upstream models,
or downstream models, or both.

Lesson 6. In most MDA situations, the model-to-model mappings are complex and
require careful design and implementation.

The core logic in a transformation usually expresses the algorithm in which one
set of model elements is transformed into another set. In a simple declarative-style
mapping, the connections are relatively simple and straightforward, and there is little
ambiguity. In most large-scale MDA-style transformations that we have seen the
mappings are not always so simple. Often an element in the upstream model will
map to one configuration of elements under a complex set of conditions that often
involve other upstream model elements, connections, and stereotypes and tag values
of various UML profiles.

Take as a simple example a persistent entity called Address that defines a number
of attributes, one of which is tagged as a primary key type (in the marking profile).
Mapping an abstract class such as this into a Java object and database design is rela-
tively straightforward (Fig. 1). A Java object is created, with the attributes mirrored,
and the data types corrected. Getters and setters are created as well. In the database
design a table and columns are created with the names adjusted to the organization’s
standards. The primary key (identified by a tag in the marking profile) is set. The
data types are converted with some help from the marking profile. The marking pro-
file can also be used to determine the Null and other typical database properties.

This simple example illustrates mapping a single class in the abstract model to a
single class in the object model and a single table in the data model. Attributes in the
abstract model map one-for-one to attributes in the object model, and columns in the
data model. Operations in the object model all trace back to exactly one attribute in
the abstract model.

In another example, however, the mapping is not so straightforward. Take as a
second example a set of classes participating in a hierarchy in the analysis model
(Fig. 2). The classes RestrictedProduct and CommericalProduct are specializations
of Product. The Product class also identifies two attributes (code and supplier) as the
object identifier or primary key; however, this is often identified with a tag value or
stereotype which may not appear rendered in a diagram. Using the organization’s
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analysis

object design

Address

+ id : Integer

+ line1 : String

+ line2 : String

+ city : String

+ state : String

+ zip : String

Address

- id : java.lang.Integer

- line1 : java.lang.String

- line2 : java.lang.String

- city : java.lang.String

- state : java.lang.String

- zip : java.lang.String

+ getId (  ) : java.lang.String

+ setId ( [in] id : java.lang.String ) : void

+ getLine1 (  ) : java.lang.String

+ setLine1 ( [in] line1 : java.lang.String ) : void

+ getLine2 (  ) : java.lang.String

+ setLine2 ( [in] line2 : java.lang.String ) : void

+ getCity (  ) : java.lang.String

+ setCity ( [in] city : java.lang.String ) : void

+ getState (  ) : java.lang.String

+ setState ( [in] state : java.lang.String ) : void

+ getZip (  ) : java.lang.String

+ setZip ( [in] zip : java.lang.String ) : void

database design

«trace»

T_ADDRESS

- «column» ID : INT

- «column» LINE1 : VARCHAR(50)

+ «column» LINE2 : VARCHAR(50)

- «column» CITY : VARCHAR(50)

- «column» STATE : CHAR(2)

- «column» ZIP : VARCHAR(9)

«trace»

Fig. 1. Mapping a simple entity to object and data design models
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Product

+ code : String

+ supplier : String

+ name : String

+ description : String

+ price : Currency

CommercialProduct

+ taxClassification : String

+ categoryCode : String

RestrictedProduct

+ securityKey : String

+ level : Integer

+ hazMat : Boolean

Fig. 2. Specialization in the analysis model

naming conventions and attribute mapping strategies, there are still three very differ-
ent ways in which this set of classes can be transformed into a database model. The
three basic strategies we refer to as “Roll Up”, “Roll Down”, and “Separate Tables”,
and are supported by IBM Rational XDE’s Data Modeler as shown in Fig. 3.

T_PRODUCT_TYPE

ID : INTEGER

ENUMERATION : CHAR(50)

DESCRIPTION : CHAR(1024)

T_PRODUCT

CODE : CHAR(4)

SUPPLIER : VARCHAR(50)

NAME : VARCHAR(100)

DESCRIPTION : VARCHAR(1024)

PRICE : DOUBLE PRECISION

SECURITY_KEY : CHAR(32)

LEVEL : INTEGER

HAZ_MAT : SMALLINT

PRODUCT_TYPE_ID : INTEGER

TAX_CLASSIFICATION : CHAR(2)

CATEGORY_CODE : CHAR(4)

«NonIdentifying relationship»

0..*

1

Fig. 3. “Roll Up” generalization strategy

In the first strategy, a new type of table T_PRODUCT_TYPE is created by tak-
ing the base class and appending the _TYPE suffix. The columns of this table are
predefined by the mapping and always the same. This “type” table is used to sim-
ply provide an extensible means to easily add new types. All the attributes of all the
sub-classes are rolled up into the one main table.

In the “Roll Down” strategy, illustrated in Fig. 4, all concrete classes are assigned
their own unique table, where columns in the base class are duplicated across all the
tables.
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T_COMMERCIAL_PRODUCT

TAX_CLASSIFICATION : CHAR(2)

CATEGORY_CODE : CHAR(4)

CODE : CHAR(4)

SUPPLIER : VARCHAR(50)

NAME : VARCHAR(100)

DESCRIPTION : VARCHAR(1024)

PRICE : DOUBLE PRECISION

T_RESTRICTED_PRODUCT

SECURITY_KEY : CHAR(32)

LEVEL : INTEGER

HAZ_MAT : SMALLINT

CODE : CHAR(4)

SUPPLIER : VARCHAR(50)

NAME : VARCHAR(100)

DESCRIPTION : VARCHAR(1024)

PRICE : DOUBLE PRECISION

Fig. 4. “Roll Down” generalization strategy

Finally, in the “Separate Tables” strategy, illustrated in Fig. 5, all classes are
mirrored with a table, and identifying relationships are created between the base class
and its sub-classes so that base class attributes captured in the base class table can be
accessed by corresponding rows of data in the child tables. In all three strategies the
tables use the composite key implied by the main base class.

T_PRODUCT

CODE : CHAR(4)

SUPPLIER : VARCHAR(50)

NAME : VARCHAR(100)

DESCRIPTION : VARCHAR(1024)

PRICE : DOUBLE PRECISION

T_COMMERCIAL_PRODUCT

TAX_CLASSIFICATION : CHAR(2)

CATEGORY_CODE : CHAR(4)

ID : INTEGER

SUPPLIER : VARCHAR(50)

CODE : CHAR(4)

T_RESTRICTED_PRODUCT

SECURITY_KEY : CHAR(32)

LEVEL : INTEGER

HAZ_MAT : SMALLINT

SUPPLIER : VARCHAR(50)

CODE : CHAR(4)

«identifying relationship»

+ CommercialProduct
0..*

1
«identifying relationship»

+ RestrictedProduct
0..*

1

Fig. 5. “Separate Tables” generalization strategy

From this example it is clear that the mapping strategy is no longer simple, and
that it is possible for some elements in the abstract model to map simultaneously
to different elements in the database design. Also, in the “Roll Up” case all three
analysis classes map to a pair of tables, with only one of them sharing a common
name.

The resultant object model might also have requirements for only a single at-
tribute as an object key (as in J2EE). The resultant transformation into the Java ob-
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ject model is illustrated in Fig. 6. Because there are two attributes that make up the
object key, a new key class is created and a directional association is added to the
object design in addition to the getters and setters.

Product

+ name : String

+ description : String

+ price : Currency

+ getCode (  )

+ setCode (  )

+ getDescription (  )

+ setDescription (  )

+ getName (  )

+ setName (  )

+ getPrice (  )

+ setPrice (  )

+ getKey (  )

+ setKey (  )

RestrictedProduct

+ securityKey : String

+ level : Integer

+ hazMat : Boolean

+ getHazMat (  )

+ setHazMat (  )

+ getLevel (  )

+ setLevel (  )

+ getSecurityKey (  )

+ setSecurityKey (  )

CommercialProduct

+ taxClassification : String

+ categoryCode : String

+ getCategoryCode (  )

+ setCategoryCode (  )

+ getTaxClassification (  )

+ setTaxClassification (  )

ProductKey

+ code : String

+ supplier : String

+ getCode (  )

+ setCode (  )

+ getSupplier (  )

+ setSupplier (  )

- key

1

Fig. 6. Java object design with generalization and composite keys

Even this simple scenario illustrates the potential complexity in real-life map-
pings. This scenario is further complicated as the rules for determining the mapping
strategy are dependent on a combination of tag values, and analysis model configura-
tions (i.e., use roll up when there are three or less classes, substitute composite keys
with a single auto-generated integer key unless an override tag value is set False,
etc.). In the micro view, each of these issues is not insurmountable, and each case
separately examined makes perfect sense, and often corresponds to what designers
and developers have been doing manually for many years. However, when collected
into a single transformation, one that needs to coordinate the structure and content
of multiple downstream models, the intertangling of logic often makes it difficult to
express simply in a declarative style. In these situations, the transformation is best
expressed and implemented algorithmically, which is the default usage style of the
MDA Toolkit.
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Lesson 7. Transformations can be expressed declaratively or imperatively. In gen-
eral the imperative approach is more adaptable when describing complex transfor-
mations.

While the MDA Toolkit naturally emphasizes an imperative style of thinking
about implementation, it also allows XDE patterns to invoke, or support, declarative
routines. The MDA Toolkit lets transformation developers create reference models
with predefined sets of model elements that can be selectively copied to a target
model and altered during the copy process.

Figure 7 highlights a fragment of a reference model that contains a number of
classes and relationships. Some of the classes have attributes and operations. The
operations have complete code templates associated with them that are used to gen-
erate complete method bodies in the code. The model element names are invalid Java
identifiers as this set of classes is not expected to be used to generate code directly.
Rather, this set of classes will be copied into a code model, and during the copy the
element names will be updated with the actual names of classes that appear in the
transformation’s input model.

%Name%BO

+ getManager (  )

%Name%Manager

+ INSTANCE : %Name%Manager

+ getInstance (  )

+ create (  )

+ update (  )

+ find (  )

+ search (  )

%Name%Value

+ %Name%Value (  )

«interface»

I%Name%

Fig. 7. A pattern of model elements in a reference model

The overall process of the transformation is to process an input model (a Platform
Independent Model – PIM) and to look for classes tagged as «managed class». This
marking in a PIM indicates that the class should be transformed into a set of classes
in the target Platform Specific Model – PSM. So for each «managed class» in the
PIM the set of classes in Fig. 7 is copied into the appropriate location of the PSM,
and during the copy the names are modified with information from the originating
PIM class.

Figure 8 shows the results of transforming one class in the PIM stereotyped
«managed class» into the PSM. The result is the creation of four new classes, whose
names are based on the originating PIM class. The transformation not only copies
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«managed class»

Product

+ id : String

+ name : String

+ description : String

+ getSummary (  )

+ computeSize (  )

ProductManager

+ INSTANCE : %Name%Manager

+ create (  )

+ find (  )

+ getInstance (  )

+ search (  )

+ update (  )

ProductValue

- description : String

- id : String

- name : String

+ computeSize (  )

+ getSummary (  )

+ getDescription (  )

+ setDescription (  )

+ getId (  )

+ setId (  )

+ getName (  )

+ setName (  )

ProductBO

- description : String

- id : String

- name : String

+ computeSize (  )

+ getSummary (  )

+ getSummary_1 (  )

+ setDescription (  )

+ getId (  )

+ setId (  )

+ getName (  )

+ setName (  )

IProduct

+ computeSize (  )

+ getSummary (  )

+ getSummary_1 (  )

+ setDescription (  )

+ getId (  )

+ setId (  )

+ getName (  )

+ setName (  )

PIM
PSM

Fig. 8. Applying a reference model-based pattern

over the structure and class properties from the reference model fragment, but also
augments the newly created classes with the PIM class’s attributes and operations as
appropriate. Getters and setters are also created in the PSM classes as appropriate.

This type of approach to transformation leverages both a declarative and visual
style of pattern definition with the underlying control of code. During the transfor-
mation, callback methods are set and can be invoked during the copy process. This
gives the developer an opportunity to specify and refine the target names of all el-
ements being copied. Following the creation and copying of the information in the
reference model, the code follows up with the rest of the transformation by copying
all public attributes and operations in the PIM classes and by creating getters and
setters.

3.4 Create UML Profiles

Lesson 8. UML profiles can be used to manage model markups as part of the MDA
transformation.

UML profiles are used in two distinct and separate ways. First, the traditional
role of UML profiles is to provide a mechanism to extend the semantics of UML
for a particular domain or method. It enables UML to effectively model something
concrete. IBM Rational’s Business Modeling Profile and Data Modeling Profile are
examples of UML profiles that enable IBM Rational XDE to effectively model busi-
ness processes and logical/physical database designs, respectively. These types of
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profile usage can be thought of as semantic profiles, necessary for the model itself to
capture and express the detail for the particular level of abstraction and domain.

Profiles are also a useful mechanism for managing model markings, a necessary
element of the MDA transformation process. Marking is a step or technique in MDA
in which additional information, not within the semantic scope of the model itself,
can be added to a model solely for use by automation later. Marking up a model is
usually a step done just before a transformation is ready to be invoked. Of course, a
model can be marked as it is developed. However, typically the role and skills of the
developer creating the model may not be appropriate to understand the significance
and purpose of the various markings themselves.

For example, suppose a simple abstract entity model (part of the traditional analy-
sis model) was developed in UML by a set of analysts. This model defines a number
of persistent entities in the proposed system, including their attributes and relation-
ships to each other. This information gets transformed into a logical (or physical)
database design. A problem occurs when the analysis model is used to create a new
database model. The information captured in the analysis model is insufficient to
complete a working data model. For instance, a String attribute of an entity could be
implemented as a CHAR, VARCHAR, or TEXT type of column. Additionally, the
length information of the column is not information that is normally captured in an
analysis model.

Transformations going from models at high levels of abstraction to models at
lower levels of abstraction, and hence more detail, often suffer this problem of insuf-
ficient or incomplete information. Even in the case of mapping a UML association
to a Java field, it is unclear how associations with multiplicities of ’many’ are imple-
mented. The semantics of sets, lists, and maps are beyond the semantic scope of most
UML analysis models, but something critical within the scope of the implementing
Java class.

UML profiles come to the rescue here by providing a mechanism through which
models and model elements can be augmented with information, albeit beyond the
model’s official semantic scope, to be used by transformations. A marking profile,
distinct and separate from any applied semantic profiles, can be applied to a model
that defines stereotypes and tag values that contain information used only during the
transformation. A data modeling profile would contain tags that describe a column’s
length or precision. A Java profile would contain information on how an association
was implemented in Java.

The MDA Toolkit functionality for creating UML profiles is in fact an example of
an MDA transformation itself. Profiles are created by first building a UML model and
stereotyping classes and attributes in the model that in the end are used to generate
the actual profile file. This stereotyping of the profile model’s elements is “marking”
the model with the necessary information for the transformation to build the actual
profile file which is registered with IBM Rational XDE, and subsequently capable of
being applied to any UML model opened by IBM Rational XDE.
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3.5 Develop the Transformation

Lesson 9. All transformations should be created such that they can participate in
a iterative process, and hence can be repeatedly applied without loss of unrelated
information.

A critical design goal of any transformation is the ability for it to participate in an
iterative development process. While one-time-only transformations may be easier to
develop, it has been our experience that these types of transformations see very little
usage as compared to the effort required to create them. Instead, transformations that
can be continually applied to evolving development lifecycle artifacts tend to be far
more valuable and worth the effort in developing.

Developing transformations with the MDA Toolkit that participate in an iterative
development process requires some attention to all elements in the design and im-
plementation. The MDA API that provides the primary method for model access and
manipulation is designed to promote this type of transformation development. For
example, when creating an attribute on a class the createAttribute() method of the
MdaClass object by default will first check to see if an attribute of that name already
exists, and if it does will simply return that instance of the attribute without creat-
ing a new duplicate attribute. Interestingly enough this is not the default behavior of
most UML access APIs because the UML specification itself does not require unique
attribute names. Therefore, in theory a UML API should permit this. However, most
of our transformations target a real-life implementation language like Java or C++,
and so in practice this type of behavior in a model API is not desired.

The MDA Toolkit API does have an implementation bias. When it compares
class names and attribute names it looks for uniqueness in its container, and uses
case-sensitive comparisons. When comparing operations, it performs a case-sensitive
name match along with a comparison of input argument data types, and ignores
return types. As a result, the MDA Toolkit API makes it significantly easier for a
transformation developer who is targeting a Java or C++ implementations to develop
iterative-friendly transformations.

The overall process of developing a MDA Toolkit transformation is little more
than an exercise in developing Java code, and in particular developing an Eclipse Java
plugin. Fortunately the toolkit wizard provides most of the Eclipse required code, and
lets the transformation developer focus on implementing the transformation logic.

Lesson 10. Good transformations implement discrete validation, transformation,
and verification procedures.

When the toolkit wizard creates a project, it provides stubs or sample code for
three key methods:

public boolean validate() throws Exception {
boolean valid = true;
return valid;

}
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public void transform() throws Exception {
}

public boolean verify() throws Exception {
boolean verified = true;
return verified;

}

The most important of these is the transform() method which is invoked when the
developer using the transformation wants to invoke the transformation. It is in this
method that the primary logic of the transformation is encoded. Any parameter val-
ues specified by the developer invoking the transformation are obtained with simple
method calls and are typically translated into something more meaningful like MDA
API references. The logic of the transformation is most often delegated to helper
methods and other custom classes that perform the real work of the transformation.
During the transformation it is often useful to write status messages to the visible
log, so the developer can monitor the progress.

In the sample implementation below, analysis model and design model filenames
are specified as parameters. Parameter values are accessed by calling a superclass
method. These are then converted to MdaModel element references. In this example
the analysis model is scanned for all classes that are stereotyped “PersistentObject”
(in a custom profile), and that are not subclasses of another class, since entire hi-
erarchies are processed in a single function. Most of the work is coordinated by the
processPersitenceObject() helper method, which in turn uses several delegate classes
to perform the bulk of the transformation work.

public void transform() throws Exception {
writeln("Starting transformation");
String analysisModelFilename =

getStringParameter(TransformationParameters
.P_FILE_PIM_MODEL);

String designModelFilename =
getStringParameter(TransformationParameters
.P_FILE_PSM_MODEL);

designModel = openModel("designModel",
designModelFilename);

analysisModel = openModel("analysisModel",
analysisModelFilename);

MdaClass[] allClasses = analysisModel.getMdaClasses(
MdaOption.RECURSE);

for(int i=0;i<allClasses.length;i++) {
MdaClass cls = allClasses[i];
MdaGeneralization[] generalizations =
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cls.getMdaGeneralizations();
if( generalizations.length == 0

&& cls.isStereotyped("MyCustomProfile",
"PersistentObject") ) {

processPersistentObject(cls);
}

}

writeln("Completed Transformation");
}

The validate() method is called before the transform() method, and if it returns
a false value will abort any attempt to run the transform() method. In the following
sample implementation the analysis model is checked to ensure that it exists and that
it has the custom profile applied to it. The design model is checked for its existence
and that it is an IBM Rational XDE code model, capable of roundtrip engineering
Java code.

public boolean validate() throws Exception {
boolean valid = true;
writeln("Starting validation");

String designModelFilename =
getStringParameter(TransformationParameters
.P_FILE_PSM_MODEL);

MdaModel designModel = openModel("designModel",
designModelFilename);

if( designModel == null ) {
valid = false;
writeln("The design model is a required parameter"

+ " and must exist.")
} else {

if( !designModel.canRTE() ) {
valid = false;
writeln("The design model must be"

+ " an XDE Code Model");
}

}

String analysisModelFilename =
getStringParameter(TransformationParameters
.P_FILE_PIM_MODEL);

MdaModel analysisModel = openModel("analysisModel",
analysisModelFilename);

if( analysisModel == null ) {
valid = false;
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writeln("The analysis model is a required parameter"
+ " and must exist." );

} else {
if( !analysisModel.hasProfile("MyCustomProfile")) {
valid = false;
writeln("The profile MyCustomProfile "

+ "must be applied to the Analysis model");
}

}

writeln("Validation completed.");
return valid;

}

Depending on the desired level of verification, the verification() method can be
as complex as the transform method itself, and typically will use helper methods and
classes similar to the actual transform code. In the following example the same code
is used to identify elements in the analysis model that should have been transformed.

public boolean verify() throws Exception {
boolean verified = true;
writeln("Starting verification");
String analysisModelFilename =

getStringParameter(TransformationParameters
.P_FILE_PIM_MODEL);

String designModelFilename =
getStringParameter(TransformationParameters
.P_FILE_PSM_MODEL);

MdaModel designModel = openModel("designModel",
designModelFilename);

MdaModel analysisModel = openModel("analysisModel",
analysisModelFilename);

MdaClass[] allClasses = analysisModel.getMdaClasses(
MdaOption.RECURSE);

for(int i=0;i<allClasses.length;i++) {
MdaClass cls = allClasses[i];
MdaGeneralization[] generalizations =

cls.getMdaGeneralizations();
if( generalizations.length == 0

&& cls.isStereotyped("MyCustomProfile",
"PersistentObject") ) {

verifyPersistentObject(cls);
}

}
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writeln("Verification completed.");
return verified;

}

The development and testing of an MDA transformation proceeds like any
Eclipse plugin project. A transformation can be debugging using the Eclipse run-
time workbench, which essentially starts up a new instance of the Eclipse and IBM
Rational XDE shells in debug mode, enabling step-by-step tracing of transformation
code.

3.6 Deploy the Transformation

Lesson 11. Use of the Eclipse plugin architecture greatly simplifies the task of in-
stalling and upgrading MDA transformations.

When a transformation has been developed the task of deploying it and educat-
ing a large development team comes next. Fortunately, the Eclipse Update Manager
mechanism provides a convenient mechanism for installing plug-ins into an Eclipse
shell. Using the built-in Eclipse Plugin Development Environment (PDE) functions,
the transformation can be packaged and placed on an internal HTTP site from where
developers can easily download and install MDA Toolkit transformations, and other
dependent plug-ins.

Once installed into a developer’s workstation the menu item corresponding to
the transformation can be activated in any perspective. The menu item prompts the
developer for the parameters of the transformation. The developer can optionally run
all three functions (validate, transform, or verify) together, or run them individually.
The results will appear in the updated models and artifacts and in the log window.

Lesson 12. Each MDA transformation must be well documented, providing samples,
guidance, and support information.

Providing the transformation functionality to a developer is not sufficient. It is
important that whenever significant new functionality such as an MDA transforma-
tion is provided to a development team, they should be educated in its usage. Since
most valuable transformations perform relatively complex work, it follows that in
many cases the decision when to use it and exactly what to supply as parameters
might be equally complex.

Updating the development process and providing online documentation to ac-
company the transformation should be considered essential to success. In the Eclipse
environment, documentation is easily inserted into the rest of the online help, and is
typically part of the transformation plugin itself or a dependent plugin that is installed
with the transformation.
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4 Commentary

4.1 The MDA Process

Building solutions using MDA approaches requires changes to the development
process. While our experience has been that many of the current best practices for en-
terprise software development are still applicable, there are some important changes
to those practices as a result of taking a more model-driven perspective to the devel-
opment process. To explore this topic we look at a well-known development process,
the Rational Unified Process, and consider the way that process is interpreted and
executed on an MDA project.

RUP Overview

The Rational Unified Process R©, or RUP R©, is the de facto standard software engi-
neering process in use today [262]. It provides a disciplined approach to assigning
tasks and responsibilities within a development organization and has been applied to
projects of varying size and complexity, with small teams and large, and on efforts
lasting weeks to large-scale programs lasting years. The goal of RUP is to ensure the
production of high-quality software that predictably meets the needs of its end users
on schedule and within budget.

Fig. 9. The RUP concepts of disciplines, phases, and iterations

Figure 9 illustrates the overall architecture of the RUP in two dimensions. The
horizontal axis represents time and shows the lifecycle aspects of the process. Both
the management perspective of lifecycle phases is shown (across the top) and the
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software engineering and project management perspective of iterations is displayed
(along the bottom).

The vertical axis represents disciplines that logically group activities by nature.
This shows the static aspect of the process – how it is described in terms of process
components, disciplines, activities, workflows, artifacts, and roles.

The concept within RUP is that at any point in time there is activity taking place
in a variety of disciplines. What distinguishes one lifecycle phase from another is not
the total absence of a discipline, but the relative amount of contribution that discipline
is making in the overall work streams. The mix of activities varies over time as
the emphasis and priorities of the project change. For example, in early iterations
you spend more time on requirements; in later iterations you spend more time on
implementation.

RUP Phases and Iterations

From a management perspective, the software lifecycle of RUP consists of four se-
quential phases, each concluded by a major milestone. An assessment is performed
to determine whether the objectives of the phase have been met. A satisfactory as-
sessment allows the project to move to the next phase. Briefly, the phases of a RUP
lifecycle are:

• Inception:. The goal of the inception phase is to reach agreement among all stake-
holders on the lifecycle objectives for the project. Typically, there are significant
business and requirements risks which must be addressed before the project can
proceed. For projects focused on small enhancements to an existing system, the
inception phase is more brief, but is still focused on ensuring that the project is
both worth doing and possible to do. The Lifecycle Objectives Milestone is the
primary exit criterion of inception. It evaluates the basic viability of the project.

• Elaboration:. The goal of the elaboration phase is to baseline the architecture of
the system to provide a stable basis for the bulk of the design and implementa-
tion effort in the construction phase. Elaboration produces an executable system
that marries the essential business requirements with the technical architecture
and demonstrates the viability of the technical approach chosen. The architec-
ture evolves out of a consideration of the most significant requirements (those
that have a great impact on the architecture of the system) and an assessment of
risk. The Lifecycle Architecture Milestone establishes a managed baseline for
the architecture of the system and enables the project team to scale during the
construction phase.

• Construction:. The goal of the construction phase is to clarify the remaining re-
quirements and complete the development of the system based upon the base-
lined architecture. The construction phase is in some sense a manufacturing
process, where emphasis is placed on managing resources and controlling op-
erations to optimize costs, schedules, and quality. In this sense the management
mindset undergoes a transition from the development of intellectual property dur-
ing inception and elaboration, to the development of deployable products during



Lessons from the Design and Use of an MDA Toolkit 427

construction and transition. The Initial Operational Capability milestone deter-
mines whether the product is ready to be deployed into a user acceptance envi-
ronment.

• Transition:. The focus of the transition phase is to ensure that software is avail-
able for its end users. The transition phase can span several iterations, and in-
cludes testing the product in preparation for release, and making minor adjust-
ments based on user feedback. At this point in the lifecycle, user feedback should
focus mainly on fine tuning the product, configuring, installing, and usability is-
sues; all the major structural issues should have been worked out much earlier in
the project lifecycle. The Product Release Milestone is where you decide if the
objectives of the project were met, and if you should start another development
cycle.

From a software engineering and project management perspective, things happen
day to day based on iterations. Phases consist of iterations – distinct sequences of
activities with a baselined plan and valuation criteria resulting in a release of artifacts
(internal or external). Every phase of the lifecycle consists of a series of iterations
and the character of the iterations differs depending on where you in the lifecycle.

RUP and MDA

Currently, RUP provides no specific guidance on how to integrate an MDA approach
into the overall process. This is not surprising as RUP reflects current industry best
practice and typically does not codify approaches until they are well established
within the field. MDA is a new and emerging approach, and significant best prac-
tice with MDA as applied to RUP projects is only now becoming available. Our
experiences, however, indicate a number of important ways in which we can en-
hance RUP with best practices for MDA projects. In particular, the backbone of RUP,
an architecture-centric iterative development process, is highly appropriate to MDA
projects. As a result, the core approaches defined in RUP offer an excellent basis on
which to succeed with MDA.

However, there are some areas where additional guidance on MDA is appropri-
ate. Here, we indicate a number of the important aspects to consider in applying RUP
to an MDA project:

• Elaboration is the main phase impacted by an MDA project. It is important to
look at elaboration activities and briefly describe MDA modifications.

• The “Architect” role is the main role in elaboration that requires addition consid-
eration. A specialization of architect, “MDA Architect” is appropriate to many
MDA projects. This is the essential role in which specific MDA activities and ar-
tifacts are defined, transformations created, and so on. Hence, the primary MDA
artifacts from this role are mapping documents, transformations, and UML pro-
files.

• MDA is as much about model-driven automation as it is about model-driven ar-
chitecture. This provides some guidance as to how to view MDA and RUP. Typi-
cally, MDA automates activities within RUP. Rather than change RUP activities,
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MDA augments them with additional tasks aimed at supporting automation of a
number of the primary RUP activities.

• The application of MDA will involve many RUP roles, but these roles will typi-
cally not have additional activities. Rather, the specific activities will have details
added on how those activities are automated using the specific tools and MDA ap-
proaches chosen. In the RUP we call these additional details RUP Tool mentors.
For example, a team working on object-relational data mapping may be using a
modeling tool with a set of MDA transformations. But their workflow related to
“define design classes” will largely remain the same at a high level.

• Perhaps more pervasively, the primary changes to RUP consist of a more subtle
change of perspective on the development process. MDA encourages architects
and developers to work at higher levels of abstraction than typically expected in
non-MDA projects. This is most apparent during construction where the code
automation aspects of MDA significantly change the emphasis of the implemen-
tation tasks. Developers are able to continue to work with more abstract analysis
and design models as inputs to MDA transformations. They find that they work
less and less with actual implementation models and source code, and more with
designing the appropriate business-focused workflow of the solution. A smaller
subset of developers will be implementing the model-to-code transformations
themselves.

• MDA transformations are frequently built around pre-built solution frameworks
(also called “Reference Architectures” or “Application Frameworks”). The MDA
transformations augment these frameworks with domain-specific business logic.
This approach of coupling MDA and solution frameworks makes a great deal of
sense since the entire MDA approach is centered on automating a set of repeat-
able approaches and assets. However, it further changes the development process
toward greater emphasis on reuse, management assets, and incremental delivery
of solutions.

4.2 Using MDA to Customize a Solution Framework

Today’s enterprise software systems are rarely (if ever) developed from scratch line
by line in an IDE. Rather, they are created by extending an existing solution frame-
work with domain specific business logic, by connecting to (and manipulating) in-
formation from different sources, and by designing rich user display and interaction
services. Hence, the development approach that is followed is not the classical “wa-
terfall” scenario where requirements gathering is followed by analysis and design,
leading to the implementation of the system. Rather, it is one of continual extension
and refinement of an existing partial solution toward a desired goal through a set of
iterations that add value to the solution.

These partial solutions that form the heart of a new system may come from one
of several sources:

(1) An existing set of applications. The primary approach may be to take an existing
solution and extend it in useful ways, as dictated by the business need. Hence,
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much of the design work involves understanding how those existing applica-
tions are architected, and where meaningful extensions can be added without
undue compromise on the qualities of the existing applications. In most cases
the process is complicated by the fact that the original applications were not
designed with the goal of reuse in mind.

(2) A proprietary application framework used by the organization. Having built
many kinds of similar solutions in a particular domain, some organizations have
extracted core application capabilities as reusable proprietary services to be em-
ployed in future solutions. These services help to improve productivity of a fam-
ily of systems that share common characteristics, and increase the predictabil-
ity of future system development. An example is Accenture’s General Reusable
Netcentric Delivery Solution (GRNDS) Framework.2

(3) An acquired application framework, whether open source or commercial in ori-
gin. Recognizing the consistent architectural patterns that are used in design-
ing certain kinds of applications has resulted in a number of technologies being
created to help organizations to create solutions conforming to those patterns.
The resulting application frameworks are available both commercially and in the
open source community, and are delivered as standalone frameworks or bundled
with tools that help create, manage, and extend those frameworks. Examples in-
clude the Struts and JSF frameworks for creating certain kinds of n-tiered J2EE
solutions.

(4) A set of extensions and customizations to packaged applications. Many organi-
zations acquire comprehensive solutions for key business processes from pack-
aged application vendors. However, organizations typically need to customize
those solutions to meet their needs. As a result, the packaged application ven-
dors have structured their solutions to support different kinds of extension and
customization, offer well-defined APIs to access internals of the packaged ap-
plication, or augment the packaged applications with detailed design documents,
extension examples, and package specific tools.

Consequently, the primary task faced by many IT projects is to create a clear
understanding of their domain, to express that understanding in a platform indepen-
dent domain model supporting various kinds of analysis to ensure its correctness and
consistency, and to map that domain model to a platform specific implementation
realized by extending the solution framework. Model-to-model transformations help
in refining the domain, while model-to-code transformation’s map the domain model
to the specific solution framework.

In model-to-code transformations the solution framework plays a key role as it
constrains and guides the kinds of transformations that are meaningful. For exam-
ple, if using a Struts-based application framework, the application being created has
a well-understood structure, including well-known extension points where business
logic will be realized. A set of transformations can be created based on that knowl-
edge. Indeed, wizard-driven tooling can be created to automate creation of those

2 See http://www.accenture.com/xd/xd.asp?it=enweb&xd=services
%5Ctechnical%5Ccapabilities%5Cgrnds.xml
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transformations for domain models containing appropriate kinds of information. This
is the way, for example, in which tools such as the IBM Rational Application Devel-
oper use domain-focused visual design tooling to automate code generation for Struts
or Java Server Faces (JSF)-based application frameworks. More generally, by using
a solution framework as the basis for a system, the task of writing model-to-code
transformations is significantly eased, and we gain greater efficiency, predictability,
repeatability, and manageability of the resulting solutions.

In summary, we reiterate that software is rarely created from scratch, and that
model transformations (to another model or to code) help leverage existing solu-
tion frameworks. As this approach of building on existing software increases, the
MDA role and value increases and helps automate how we extend and customize
those frameworks. In fact, this “custom automation” is viewed by some as the only
viable option for creating systems of increasing complexity, and in response to the
constraints placed on us by the components and technologies we deploy.

5 Summary and Future Directions

Model-driven approaches to software and system development have been in use for
some time. More recently, the focus of attention has been on how to increase automa-
tion of model-driven technologies based on the OMG’s MDA approach. MDA ap-
proaches enable organizations to construct custom automations for model-to-model
and model-to-code transformations. Using these transformations technical experts
can share their expertise across a large development team. In particular, MDA offers
a number of advantages over other approaches:

• Productivity of development is increased by helping to insulate a majority of de-
velopers from technical details that they do not need to consider to carry out their
task of designing enterprise solutions to meet a business need. Consequently,
more time is spent focusing on the task at hand: implementing the business ca-
pabilities of the system.

• Quality is improved by encouraging reuse of known patterns of behavior, build-
ing on existing architectural designs, and leveraging expertise more effectively.
The use of automation also promotes consistency and improves the quality of the
system design and implementation, particularly as the solution evolves through
maintenance and upgrade.

• Predictability of the development process and the delivered solution is enhanced
through a repeatable set of practices well matched to today’s need for iterative
delivery of solution capabilities. The use of automation speeds up development,
particularly where many of the tasks of the developer are repeated and cumber-
some.

In this chapter we have explored many of the practical aspects of realizing an
MDA approach based on our use of modeling approaches in general, and the design
and use of a specific MDA Toolkit for IBM Rational XDE for Java. These experi-
ences reveal that while traditional design and implementation practices are relevant
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to MDA projects, there are a number of additional requirements that must be ad-
dressed to ensure that the approach is optimally applied. We have described many
of these requirements, and illustrated them with practical examples. Our key find-
ings have been distilled into 12 lessons for the practical application of MDA. These
lessons, however, are not specific to a single set of technologies. They have also been
applied within other IBM Rational tools. The latest set of solutions from IBM Ra-
tional support MDA development projects by providing capabilities that have been
created based on experiences with existing technologies and practices, including
those reported here. As a result, IBM Rational tools provide a rich set of functional-
ity for all types of automation, including predefined out-of-the-box transformations
and tools for customizing transformations.3 The latest example of this support for
MDA is seen in IBM Rational Software Architect. This is an extensive workbench
of design and construction services supporting various aspects of analysis, design,
and implementation of enterprise systems, including sophisticated model authoring
and management capabilities to support visual modeling in UML. Specific to MDA
projects, the IBM Rational Software Architect product contains an extensive cus-
tom pattern authoring environment, and supports authoring of model-to-model and
model-to-code transformations in several ways (depending on preferred style and
design goals):

• Generic plugins (using the Eclipse plugin development environment).
• Pluglets (small, easily installable automation assistants useful for quick one-time

automation tasks).
• Transformations (a rules-based framework for structuring large and complex

transformations).

Supporting these technologies is a set of best practices that assist organizations to
adopt model-driven approaches. Integrated with the IBM Rational Software Archi-
tect product is context-specific process guidance for development using techniques
based on the RUP. Furthermore, this guidance can be augmented with project spe-
cific additional practices and reusable assets available from online sources (such as
developerWorks)4.
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UML-D profiles, 241
AbstractDistributionReali-
zationProfile, 241

DistributionProfile, 241
RMIDistributionRealization-
Profile, 241

UML-MS profiles, 242
Esterel, 299, 300
Esterel Studio, 299, 301
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Events, 38
evolution, 269
execution infrastructure, 125, 126
execution platform, 131
experimental frame, 363

failure mode and effects analysis, 293, 297
failure modes, 300
fault tolerance, 297
fault tree analysis, 293, 297
faults, 300
feature variability, 160
FMEA, see failure mode and effects analysis,

294
formal specification, 57
formal verification, 294, 299
formalism, 20

semantics, 20, 28
syntax, 20, 28

framework, 123, 125
framework specialization, 167
FTA, see fault tree analysis, 294

general platform model, 126, 127, 136
Generic Modeling Environment (GME), 200
GME (Generic Modeling Environment),

200–204, 206–208, 210, 216, 217

hardware, 121, 122, 124
hazard analysis, 291
hazards, 292

IBM Rational Rose, 194
incremental development, 363
inheritance relation, 62
initial knowledge, 43
initial state, 38
input model, 134
input queue, 38
intent specifications, 295, 299, 300
intents, 291
inter-model consistency, 71
interfaces, 294
intra-model consistency, 71

J2EE platform, 130
Java Metadata Interface (JMI), 245
JMI, 48

language definition, 125

language facility, 57
language support, 123, 125
legacy code, 290
library, 123, 125
Lustre, 302

machine language, 122
MADE toolset, 139, 153
maintainability, 272

of MDA applications, 279
maintenance, 269

adaptive, 270
corrective, 270
perfective, 269
preventive, 270

mapping, see transformation
MDA, 27, 269, 385

maintainability, 279
PIM, 27
Platform Independent Model, 27
Platform Specific Model, 27
PSM, 27
testing, 280
tools, 273

MDA script, 309
model transformations, 313
queries, 310

constraints, 312
design guidelines, 312
metrics, 311

MDD tools, 140, 176
MDR, 49
measure of

platform independence, 133
platform specifity, 133

Meta-Data Repository (MDR), 245
meta-model, 59
Meta-Object Facility (MOF), 201, 245
MIC (Model-Integrated Computing), 200,

201
middleware, 123, 238
migration relation, 63
model, 19

Model-Driven Architecture, see MDA
PIM, see MDA
Platform Independent Model, see MDA
Platform Specific Model, see MDA
PSM, see MDA
source, 20
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target, 20
transformation, see transformation

model checkers, 299
model comparison, 221–226, 228, 233, 235
model comprehension, 171
model difference, 219, 221, 223, 235
model refactoring, 199, 200, 202, 208, 209,

215–217, 313
Model Refinement, 313
model transformation, 86, 199–203, 208,

209, 216, 217
model transformation testing, 219–221, 223
Model-Driven Architecture, see MDA
Model-Driven Architecture (MDA), 238

committed companies, 264
model-driven development, 57, 363
model-driven software development, 27
model-integrated computing (MIC), 200
modeling and simulation, 363
modelling

environments, 290
tools, 291

modelling environment, 57, 86
modelling language, 58
modelling language CAMLE, 62
modularity, 57
MOF, 47
multi-agent systems (MAS), 57, 59
multi-agent systems (MASs), 57
multi-set, 38
multimodel, 363
multiple view principle, 58

Object Constraint Language (OCL), 201,
240

object diagrams, 322
OCL (Object Constraint Language), 201,

216, 217
operating system, 121, 122, 124
OptimalJ, 264

patterns, 264
OTIF, 340
output model, 133
output queue, 38

Parallax, 242
PrlxAspectPlugins, 251
PrlxCodeGeneratorPlugins, 251
PrlxConcernAspectPlugins, 253

PrlxExtensionRule, 252, 255, 257
PrlxInputAdaptorPlugins, 245,

246
two dependency dimensions, 245

PrlxConcernPlatformAspect-
Plugins, 256

compatible IDs, 258
four dependency dimensions, 256
plug-in identifier (ID), 258

PrlxConcernTechnologyAspect-
Plugins, 253

architecture, 242
core (PrlxCore), 242, 243
distinctive features, 265
extension points, 243
prlxcodegenerators, 251
prlxinputadaptors, 246
prlxprofiles, 253

graphical user interface, 260
metamodel (PrlxMetamodel), 244
model (PrlxModel), 244
model hierarchy, 244
perspective (PrlxPerspective), 242
plug-ins (PrlxPlugins), 243
plugins (PrlxPlugins), 250
usage scenario, 262
views (PrlxViews), 242, 260

concerns, 261
filters, 261
log, 263
model explorer, 260
platforms, 262
technologies, 261
views, 261

path abstraction, 189
pattern, 182
Petri net, 212–214
Platform, 119
platform, 135

.NET, 130
deployment, 126
development, 126
execution, 131
facet, 126

instances, 126
language, 126
patterns, 127
types, 126

family, 131
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J2EE, 130
measure of

independence, 133
specifity, 133

model, 120
general, 126, 127, 136

platform independence, 132, 290
platform model, 135
port dependence graph (PDG), 337
predefined

instances, 126
types, 126

previous knowledge, 43
process

verification, 290
properties

extra-functional, 291, 294
real-time, 291
system-level, 291, 294

protocol processing
Applications, 314
design methodology, 314

functional specification, 316
specific implementation, 317

system generation, 321
prover, 299, 301
PSM, 389

QoS-enabled middleware, 330
quality assurance, 77
query, see transformation

RAM, 393
RAMSES, 397
real-time systems, 363
redundancy, 297
refactoring, 199, 200, 202–209, 212–217
reference architecture, 273
refinement, 66
reliability, 291, 292
requirements

extra-functional, 289
footprint, 290
high-level, 296
reliability, 292
safety, 290
safety-critical, 290

reverse engineering, 179
Rhapsody, 301, 302

robustness
analysis, 296

Role, 394
RSML, 296
RTCORBA, 330
runtime system, 123

safety, 291, 292
analysis, 292, 296
properties, 297

safety-critical requirements, 290
Scade, 302
scenario diagrams, 68
scenarios, 65, 79
security, 290
separation of concerns, 140, 143, 145, 175
separation of concerns (SoC), 247
service, 393
Sigma model, 297
slicing, 337
SMW, 309
software

components, 292
embedded, 289
engineering, 291

software evolution, 269
software maintenance, 164
Software Modeling Workbench, see SMW
specification, 20
specification language SLABS, 59, 79
specification language Z, 86
SpecTerel, 301
SpecTRM, 296, 300, 301
SpecTRM-RL, 296, 300
stack class, 128
statecharts, 302
swim lane, 68
system, 19
system calls, 124
systems

high-assurance, 290, 291
safety-critical, 291

TACO, 306, 319
testing framework, 219–221, 226, 227, 229,

235
threat function, 43
threat scenario, 43
Tiger XS, 290
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time-to-market, 291
tool infrastructure, 140, 145, 176
traceability, 295, 296, 300
transformation, 20, 179

classification scheme, 22
code generation, 21, 27
endogen, 21
exogen, 21
horizontal, 21, 32
mapping, 22

approximation, 28, 30
non-ambiguous, 28
selection, 28, 29

query, 21
semantics-preserving, 27, 28
specification

declarative, 22
operational, 22

vertical, 21, 27
transformation chain, 133
transformation tool spectrum, 135
transformational software development, 26

UML, 64, 78, 86, 180, 200, 201, 203, 204,
206, 208, 215–217, 294, 296, 301

business modeling, 275

UML Machine, 38
UML Machine System, 39
UMLsec, 44
understanding, 179
Unified Modeling Language (UML), 238,

240
metamodeling architecture, 244
profiling, profiles, 240, 252

update rule, 38
upgrade, 289, 290

cost-effective, 291
process, 291

upgrade process, 297
usage rules, 127

virtual machine, 121, 122, 124
Visual State, 301

whole–part relation, 63

Xlinkit, 78
XMI, 47

model interchange, 275
XML, 47
XML Metadata Interchange (XMI),

243–246, 252
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